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1 Introduction 

1.1 Motivation 
In this Technical Report we evaluate our current algorithms and State-of-Art (SoA) ones using 

the evaluation framework (including datasets, associated ground-truth and metrics) described in 

Deliverable 5.3v1 “EventVideo test sequences, ground-truth and evaluation methodology”[1]. 

The analysis of the obtained results is used to define the research lines for the rest of the project. 

1.2 Document structure 
This document contains the following chapters: 

 Chapter 1: Introduction to this document 

 Chapter 2: Segmentation in fixed camera scenarios 

 Chapter 3: Segmentation in moving camera scenarios 

 Chapter 4: People Modelling and Detection 

 Chapter 5: Tracking 

 Chapter 6: Event Detection 

 Chapter 7: Conclusions and future work. 
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2 Segmentation in fixed camera scenarios 

2.1 Introduction 
Commonly named as video object segmentation (VOS), this task is sometimes defined as 

foreground-background segregation or change detection.  Although there are small differences 

between a change detection algorithm and a VOS algorithm (mainly the inclusion in the 

background model of foreground objects that remain static for a long time), both terms are 

commonly synonyms in the state of the art and also along this document. Regardless of the 

name, the main objective of a VOS system is to detect a set of pixels (foreground) as changes 

respect to a set of reference pixels (background).  

 

The motion of the camera used to capture the scene limits the applicability of VOS techniques. 

In the simplest case, the camera is fixed in a spatial position and captures the time evolution of a 

spatially static shot (a single frame of view). Under these conditions, temporal evolution of the 

set of background pixels can be modelled or estimated, pixel-based or region-based, and 

foreground pixels can be detected as deviations from the background set.  On the contrary, when 

the video is being (or has been) recorded allowing camera motion, both time and spatial 

evolution of the set of background pixels need to be considered. This task is usually performed 

by camera motion compensation. The foreground is then detected as pixels or regions whose 

estimated motion differs from the modelled one.  

 

In this technical report we just focus on algorithms devoted to perform VOS in fixed camera 

scenarios; these are usually tagged as background subtraction algorithms. VOS by background 

subtraction, while being the simplest and the most studied situation, is still an unresolved task 

 

VOS algorithms are classically characterized as parametric or non-parametric. Although this 

organization is still valid, it should be extended in order to account for recent trends in this task. 

In essence, VOS algorithms can be classified by two main aspects: how they model the 

background and how they update the background model. 

 

2.1.1 Background model nature 

A background model is tagged as parametric if it tries to adjust the input data to a predefined 

probability distribution function at each unit of analysis (a single Gaussian, a mixture of 

Gaussians, etc.). Then, foreground is detected by evaluating new instances against their 

corresponding model and thresholding low probabilities.  On the contrary, either if the model is 

not predefined and is estimated by a set of samples, or if the set of samples is sprightly used as 

the background model, the VOS algorithm can be considered non-parametric. However, this 

classification does not imply that non-parametric VOS algorithms are completely parameter 

free. Non-parametric models are supposed to be more flexible (but also more sensitive) to the 

nature of the input data.  

 

2.1.2 Background updating nature 

To account for temporal variations (sudden or gradual changes in illumination, aggregation of 

new objects, uncovering of unobserved background, etc.) of the modelled background, the 

model should be updated. Classically, the foreground discrimination and the model updating 

processes are performed at pixel level, that is, the classification of a pixel either as background 

or foreground just relies on its temporal evolution and only affects the updating of the model at 

such pixel. However, solutions that use neighbouring pixel information to discriminate the 
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foreground and/or update the neighbouring pixels independently of their classification have 

been proven to obtain promising results. 

Additionally, these decision and updating mechanisms can be performed either entirely at pixel 

level or can rely on higher level analysis modules (e.g. at blob, region or object level) that refine 

or correct pixel-based decisions. 

 

2.1.3 Proposed VOS algorithms organization 

According to the aforementioned aspects, and irrespective of the features and the distances used 

to analyze the scene and to discriminate the foreground, we can organize most of the existing 

VOS algorithms in the categories described in Table 1. In this organization, classical parametric 

algorithms as the Mixture of Gaussians MoG [2]would be classified as a VOSC1 algorithm 

while first non-parametric algorithms as the Kernel Density Estimation (KDE) [3] would be 

included in the VOSC5 category. 

 

Background 

Model 

Nature 

Parametric Non-parametric 

Background 

Updating 

Mechanisms 

Single Pixel Group of pixels Single Pixel Group of pixels 

Pixel 

Level 

Higher 

Levels 

Pixel 

Level 

Higher 

Levels 

Pixel 

Level 

Higher 

Levels 

Pixel 

Level 

Higher 

Levels 

Category VOSC1 VOSC2 VOSC3 VOSC4 VOSC5 VOSC6 VOSC7 VOSC8 

Examples 

(in this 

document) 

 

[6] 
 

[7], [8] 
 

[9] 
 

[10] 
 

[11] 
 

[12] 
 

[13] 
 

[14],[15] 

 

Table 1 – Proposed organization of Video Object Segmentation algorithms 

With this organization in mind, the rest of this chapter is organized as follows. Section Error! 

Reference source not found. describes the evaluation scenario and its associated complexity 

factors. Section Error! Reference source not found. categorizes and briefly describes the 

algorithms chosen to perform the comparative study presented at section 2.4. Finally, section 

Error! Reference source not found. derives some conclusions from the analysis of the study 

while section Error! Reference source not found. includes a set of future research lines. 

2.2 Selected evaluation scenario 
To date, many change detection algorithms have been developed that perform well in some 

types of videos but not in many others. No single algorithm seems to be able to simultaneously 

address all the key challenges that accompany real-world (non-synthetic) videos. This is due, in 

part, to the absence of a realistic large-scale dataset with accurate ground truth, which would 

help designing such general purpose algorithm. 

 

The Change Detection Dataset (referenced in Error! Reference source not found. as 

http://www.changedetection.net/, a more detailed description can be found at [4]) was proposed 

as part of the CVPR 2012 Change Detection Workshop as a rigorous and comprehensive 

academic benchmarking effort for testing and ranking existing and new algorithms. This dataset 

aims to provide a balanced coverage of the range of challenges present in the real world. The 

main advantages of this dataset respect to the others detailed in Error! Reference source not 

found. can be summarized as following: 

 

 It presents a compound of real-world videos (including thermal) and it is representative of 

indoor and outdoor visual data captured today in surveillance and smart environment 

scenarios. 

http://www.changedetection.net/
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 It includes a comprehensive set of carefully human-annotated ground truth change/motion 

areas to enable a precise quantitative comparison and ranking of various algorithms. 

 It divides the content in 6 categories selected to include diverse motion and change 

detection challenges. 

 

In Error! Reference source not found., videos in this dataset were assigned an estimated 

complexity: S1 or S2, S1 corresponding to low complex background videos and low foreground 

density, and S2 including similar foreground but background scenarios of high complexity
1
.  

However, the complexity of scenarios labelled as S2 should be further analysed. Which are the 

challenges (CH) that face VOS algorithms in the analysis of real-world videos, even if the 

foreground is of low density? The exhaustively surveys presented at [5] and [6] summarize 

them:  

CH1: Light changes. A VOS system should adapt to illumination changes whether gradual 

changes (e.g., time of day in outdoor scenarios) or sudden changes (e.g., light switch in indoors) 

CH2: Moving background. A good VOS algorithm should handle the relocation of background 

objects, non-stationary background objects (e.g. waving trees), and image changes due to small 

camera motion which is common in outdoor applications (e.g. camera jitter by wind load). 

CH3: Cast Shadows. Shadows share the same motion patterns and have a similar magnitude of 

intensity change as that of the foreground objects. Since cast shadows can be as big as the actual 

objects, their incorrect classification as foreground results in inaccurate detection and severely 

harm the overall results of a particular algorithm. Self-shadows are less problematic as they 

affect an internal part of the foreground, then they are equivalent to foreground in the 

quantification of the algorithm performance.  

CH4: Model initialization (bootstrapping). Most of the background models are built on a set of 

initial parameters that come out from a short sequence (or from the beginning of a sequence), in 

which no foregrounds objects are present. This is a too strong assumption, because in some 

situations it is difficult or impossible to control the area being monitored (e.g., public zones), 

which might be characterized by a continuous presence of moving objects which can also be of 

considerable size respect to the field of view.  

CH5: Camouflage. As a foreground object might have similar characteristics as the 

background, it becomes difficult to distinguish between them while being robust to small 

variations of the background.  Camouflage is a particular case of the classical sensitivity 

discriminability trade-off.  

 

Numerically, the Change Detection Dataset [4] contains 31 real-world videos adding up to over 

80,000 frames organized in the categories depicted in Figure 1. 

 

Dataset 

Category 

(number of 

videos) 

Sample Frames 

Predominant  

Complexity 

factors 

                                                      
1
 We are not aware of any VOS dataset including videos of categories S3 and S4. As defined in Error! 

Reference source not found., scenarios tagged with those complexity factors combine crowded 

foregrounds and simple and complex backgrounds respectively). 
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1. 

Baseline (4) 

 

CH 3 

 

CH4 

 

CH5 

2. 

Dynamic 

Background (6) 

 

 

CH 1 

 

CH 2 

 

CH5 
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3. 

Intermittent 

Object 

Motion (6) 

 

 

CH 2 

 

CH 3 

 

CH 5 

4. 

Shadow (6) 

 

 

CH 1 

 

CH 3 

 

CH4 

 

CH 5 
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5. 

Thermal (5) 

 

CH4 

 

CH 5 

6. 

Camera Jitter 

(4) 

 

 

CH 1 

 

CH 2 

 

CH 3 

 

CH4 

 

CH 5 

 

Figure 1 – VOS dataset description (challenges of main relevance are highlighted in bold)  

 

Several metrics were computed in [4] aiming to perform a faithful comparison among the 

algorithms. The ones used in this technical report are listed at Table 2. 

 

Metrics used for results comparison 

Name Description Equivalent 

metric in 

Error! 

Reference 

source not 

found.   
TP True Positives TP 
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FP False Positives FP 

FN False Negatives FN 

TN True Negatives TN 

RE Recall: TP / (TP + FN) R1 

SP Specificity: TN / (TN + FP) R0 

FPR False Positive Rate: FP / (FP + TN) 1-R0 

FNR False Negative Rate : FN / (TP + FN) 1-R1 

PWC Percentage of Wrong Classifications:                                                                     

100 * (FN + FP) / (TP + FN + FP + TN) 
- 

F-M F-Measure : (2 * Precision * Recall) / (Precision + Recall) FS1 

PR Precision : TP / (TP + FP)  P1 

Table 2 – Metrics used for result comparison 

2.3 Algorithms 
Top-cited VOS algorithms have been tested over the Change Detection Dataset. We include 

here a list of the results obtained by the top-ranked in each category, preceding each by a brief 

overview of their operation. Results were straightly extracted from [4], where the parameters of 

the algorithms were adequately tuned to the dataset sequences. Additionally, we have included 

two more VOS algorithms developed (one also designed) at the VPULab.  

 

2.3.1 Splitting Gaussians in Mixture Models (SGMM) [6] 

2.3.1.1 Algorithm overview 

The authors claim that Gaussian mixture models often suffer from the problem of converging to 

poor solutions if the main mode stretches and thus over-dominates weaker distributions. Based 

on the results of the Split and Merge EM algorithm, they propose a solution to this problem. 

They define a new splitting operation and the corresponding criterion for the selection of 

candidate modes in order to avoid over-dominating ones. They also propose a heuristic to 

adaptively compute a value for the correct initialization of the variance parameters of new 

created modes. This heuristic is based on the estimation of the variance of new modes from the 

median of all the observed variances until its creation. 

 

VOS category:                                                                                                 VOSC1 

Explicitly designed to tackle challenges:                                                     CH1 CH2  

 

Observations:  The system seems to work properly at shadowed scenarios. However, its 

authors do not include any special module to tackle the shadows challenge. 

2.3.1.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.8680 0.9949 0.0051 0.1320 1.2436 0.8594 0.8584 

Dynamic Background 0.7715 0.9933 0.0067 0.2285 0.9132 0.6380 0.6665 

Intermittent object motion 0.5013 0.9853 0.0147 0.4987 4.9180 0.5397 0.6993 

Shadow 0.8580 0.9889 0.0111 0.1420 1.7965 0.7944 0.7617 

Thermal 0.5363 0.9970 0.0030 0.4637 3.9394 0.6481 0.9263 

Camera Jitter 0.7088 0.9869 0.0131 0.2912 2.3761 0.7251 0.7752 

Overall 0.7073 0.9910 0.0090 0.2927 2.5311 0.7008 0.7812 

 

Table 3 – SGMM [6] results as stated in [4] 
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2.3.2 Splitting Gaussians in Mixture Models & Static Object 
Detection (SGMM-SOD) [7]  

2.3.2.1 Algorithm overview 

 

Authors combine two models; one is devoted to detect motion while the other aims to achieve a 

representation of the empty scene. The differences in foreground detection of the 

complementary models are used to identify new static regions. A higher-level module is used to 

detect if a static object was placed or removed from the scene. Static objects are prevented from 

being incorporated into the empty scene model while removed objects are dropped from both 

models. 

 

VOS category:                                                                                                 VOSC2 

Explicitly designed to tackle challenges:                                                     CH1 CH2 CH4 

Observations: This algorithm is explicitly devoted to run over very crowded scenarios. 

However, with the available datasets we cannot evaluate its operation in scenarios of estimated 

complexity factors S3 and S4. Again, no special treatment of the shadows is performed, even 

while being this algorithm one of the top performing at the Shadow category. 

2.3.2.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.9361 0.9971 0.0029 0.0639 0.5578 0.9169 0.9018 

Dynamic Background 0.7538 0.9964 0.0036 0.2462 0.6121 0.6861 0.7391 

Intermittent object motion 0.7198 0.9833 0.0167 0.2802 3.0501 0.6873 0.7737 

Shadow 0.9184 0.9903 0.0097 0.0816 1.2583 0.8613 0.8187 

Thermal 0.5941 0.9966 0.0034 0.4059 1.8926 0.6949 0.9521 

Camera Jitter 0.6310 0.9920 0.0080 0.3690 2.1632 0.6988 0.8273 

Overall 0.7589 0.9926 0.0074 0.2411 1.5890 0.7576 0.8354 

 

Table 4 – SGMM-SOD [7] results as stated in [4] 

2.3.3 Chebyshev inequality based modelling (CHEBYSHEV) [8] 

2.3.3.1 Algorithm overview 

The background model is based on a Chebyshev probability inequality. The model is supported 

with peripheral and recurrent motion detectors. The system additionally uses a shadow detection 

module as well as relevance feedback from higher-level object tracking and object classification 

to further refine the segmentation accuracy.  

 

VOS category:                                                                                                 VOSC2 

Explicitly designed to tackle challenges:                                                     CH1 CH2 CH3 CH4 

 

Observations: As stated by the authors, some of the higher-level modules conflict with the 

techniques designed at pixel level processing.  

2.3.3.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.8266 0.9970 0.0030 0.1734 0.8304 0.8646 0.9143 

Dynamic Background 0.8182 0.9976 0.0024 0.1818 0.4086 0.7520 0.7339 

Intermittent object motion 0.3570 0.9807 0.0193 0.6430 6.4700 0.3863 0.7688 

Shadow 0.8670 0.9887 0.0113 0.1330 1.5561 0.8333 0.8103 
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Thermal 0.6887  0.9963  0.0037  0.3113  1.4283  0.7230  0.8906 

Camera Jitter 0.7223 0.9725 0.0275 0.2777 3.6203 0.6416 0.5960 

Overall 0.7133 0.9888 0.0112 0.2867 2.3856 0.7001 0.7856 

 

Table 5 – Chebyshev [8] results as stated in [4] 

2.3.4 Gamma inequality based modelling (GAMMA) [9] 

2.3.4.1 Algorithm overview 

The background model is dynamically generated based on temporal information. Foreground is 

detected by performing a significance test over the difference between a particular frame and the 

background model. The difference is supposed to be caused just by camera noise in absence of 

foreground and therefore it is modelled by a Gaussian distribution. The distribution of the 

difference at a spatial neighbourhood of a pixel is compared to a dynamic threshold modelled by 

a ratio of Gamma functions. 

 

VOS category:                                                                                                 VOSC3 

Explicitly designed to tackle challenges:                         CH1                             

 

Observations: We use our own implementation of this algorithm to obtain the results included 

at Table 6. Eight different configurations of the algorithm’s learning rate and sensitivity to 

foreground have been tested. Specifically, we have swept the learning rate value from 5% to 

20% with increments of 5% at each step and we have evaluated the algorithm with foreground’s 

sensitivities of 7, 13 and 26. Included results correspond to the best configuration at each 

category in terms of average F Score Measure (F-M). 

2.3.4.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.8241 0.9980 0.0020 0.1759 0.6707 0.8773 0.9406 
Dynamic Background 0.7849 0.9587 0.0413 0.2151 4.2557 0.3301 0.2348 
Intermittent object motion 0.8972 0.7975 0.2025 0.1028 18.163 0.5060 0.4275 
Shadow 0.7986 0.9831 0.0169 0.2014 2.4146 0.7069 0.6549 
Thermal 0.7381 0.9901 0.0099 0.2619 1.8812 0.7509 0.7724 
Camera Jitter 0.6839 0.9408 0.0592 0.3161 6.9153 0.4639 0.3609 
Overall 0.7878 0.9447 0.0553 0.2122 5.7169 0.6059 0.5652 

 

Table 6 – Gamma [9] results  

2.3.5 Multilayer modelling updated by Bayes’ rule (BAYES MULTI-
LAYER) [10] 

2.3.5.1 Algorithm overview 

This algorithm works by modelling the different appearances of a pixel in a set of independent 

layers. Its main contribution with respect to the existing approaches is the use of an a priori 

classification scheme that classifies the pixel before updating the background model. This 

scheme isolates the pixel instances that belong to the foreground, hence avoiding their influence 

in the model updating and discrimination processes of the subsequent frames. Additionally, 

authors propose the inclusion of a foreground model driven by a tracking module. The model 

updating is performed over a group of pixels by feeding back the results obtained at higher 

levels. 

 

VOS category:                                                                                                 VOSC3 
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Explicitly designed to tackle challenges:                                                     CH1 CH2 CH4 

 

Observations: We use our own implementation of this algorithm to obtain the results included 

at Table 7. Configuration parameters have not been specifically tuned. 

2.3.5.2 Results 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.6547 0.9914 0.0086 0.3453 2.1523 0.6658 0.6967 
Dynamic Background 0.8294 0.9601 0.0399 0.1706 4.1094 0.5160 0.4850 
Intermittent object motion 0.4867 0.9677 0.0323 0.5133 6.7053 0.4887 0.5579 
Shadow 0.6633 0.9683 0.0317 0.3366 4.6287 0.5841 0.5292 
Thermal 0.6566 0.9931 0.0069 0.3433 2.6112 0.7162 0.8607 
Camera Jitter 0.8177 0.9910 0.0090 0.1823 1.0681 0.5912 0.5668 
Overall 0.6847 0.9786 0.0214 0.3152 3.5458 0.5937 0.6161 

 

Table 7 – BAYES MULTI-LAYER [10] results  

2.3.6 Pixel-Based Adaptive Segmenter (PBAS) [11] 

2.3.6.1 Algorithm overview 

It follows a non-parametric background modelling approach. Background is modelled by a 

history of recently observed pixel values. The foreground detection depends on a decision 

threshold. The background update is based on a learning parameter. Both parameters are 

extended to dynamic per-pixel state variables and dynamic controllers were introduced to 

control them by estimation of the background dynamics.  

 

VOS category:                                                                                                 VOSC3 

Explicitly designed to tackle challenges:                                                     CH1 CH2 CH3 

 

Observations: Up to nine parameters should be tuned. The complexity of its configuration may 

complicate its use over untrained videos as well as its use as an on-the-fly VOS algorithm. 

2.3.6.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.9594 0.9970 0.0030 0.0406 0.4858 0.9242 0.8941 

Dynamic Background 0.6955 0.9989 0.0011 0.3045 0.5394 0.6829 0.8326 

Intermittent object motion 0.6700 0.9751 0.0249 0.3300 4.2871 0.5745 0.7045 

Shadow 0.9133 0.9904 0.0096 0.0867 1.2753 0.8597 0.8143 

Thermal 0.7283 0.9934 0.0066 0.2717 1.5398 0.7556 0.8922 

Camera Jitter 0.7373 0.9838 0.0162 0.2627 2.4882 0.7220 0.7586 

Overall 0.7840 0.9898 0.0102 0.2160 1.7693 0.7532 0.8160 

 

Table 8 – PABS [11] results as stated in [4] 

 

2.3.7 Probabilistic Superpixel Markov Random Fields (PSP-MRF) [12] 

2.3.7.1 Algorithm overview 

In this work, the authors proposed a post-processing framework to improve a given VOS mask 

with the use of Probabilistic Superpixel Markov Random Fields. First, they convert the input 

pixel-based VOS into a probabilistic superpixel (similar-in-shape regions) representation. Based 
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on these probabilistic superpixels, a Markov random field exploits structural information and 

similarities to improve the VOS mask.  

 

VOS category:                                                                                                 VOSC6 

Explicitly designed to tackle challenges:                         -                             

Observations:  The algorithm starts from pre-computed results obtained by different state-of-

the art VOS systems. No explicit mention to the one used at each category of the Change 

Detection Dataset [3] is made along the paper.  

2.3.7.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.9319 0.9978 0.0022 0.0681 0.4127 0.9289 0.9261 

Dynamic Background 0.8955 0.9859 0.0141 0.1045 1.4514 0.6960 0.6576 

Intermittent object motion 0.7010 0.9530 0.0470 0.2990 6.0594 0.5645 0.5727 

Shadow 0.8736 0.9829 0.0171 0.1264 2.2414 0.7907 0.7281 

Thermal 0.5991 0.9962 0.0038 0.4009 1.9189 0.6932 0.9218 

Camera Jitter 0.8211 0.9825 0.0175 0.1789 2.2781 0.7502 0.7009 

Overall 0.8037 0.9830 0.0170 0.1963 2.3937 0.7372 0.7512 

 

Table 9 – PSP-MRF [12] results as stated in [4] 

2.3.8 Self-Organized Background Subtraction with Spatial 
Coherence (SOBS-SC)[13] 

2.3.8.1 Algorithm overview 

It is based on the neural background model automatically generated by a self-organizing 

method, without prior knowledge about the involved patterns. Such adaptive model is supposed 

to handle scenes containing moving backgrounds, gradual illumination variations and 

camouflage, and to add into the background model cast-shadows generated by moving objects. 

Moreover, the introduction of spatial coherence into the background update procedure provides 

further robustness against false detections.  

 

VOS category:                                                                                                 VOSC7 

Explicitly designed to tackle challenges:                                                     CH1 CH2 CH3 CH5 

Observations: Nature of the feature vector has been selected to provide robustness against cast 

shadows. On the contrary, there are not devoted parts of the work designed to avoid the 

influence of camouflage, neither at feature selection stage nor by means of a specific module.  

2.3.8.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.9327 0.9980 0.0020 0.0673 0.3747 0.9333 0.9341 

Dynamic Background 0.8918 0.9836 0.0164 0.1082 1.6899 0.6686 0.6283 

Intermittent object motion 0.7237 0.9613 0.0387 0.2763 5.2207 0.5918 0.5896 

Shadow 0.8502 0.9834 0.0166 0.1498 2.3000 0.7786 0.7230 

Thermal 0.6003 0.9957 0.0043 0.3997 1.9841 0.6923 0.8857 

Camera Jitter 0.8113 0.9768 0.0232 0.1887 2.8794 0.7051 0.6286 

Overall 0.8017 0.9831 0.0169 0.1983 2.4081 0.7283 0.7315 

 

Table 10 – SOBS-SC [13] results as stated in [4] 
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2.3.9 Enhanced VIsual Background Extractor (ViBe+)[14] 

2.3.9.1 Algorithm overview 

This technique models the background with a set of samples for each pixel and compares new 

frames, pixel by pixel, to determine if a pixel belongs to the background or to the foreground. In 

its original version, the scope of ViBe was limited to background modelling. In this extension, a 

set of modifications that alter the working of ViBe were introduced. They include the inhibition 

of propagation to the background model of samples placed around internal borders and the 

distinction between the updating and segmentation masks. Finally they include a model to post-

process the output by some operations on the connected components.  

 

VOS category:                                                                                                 VOSC8 

Explicitly designed to tackle challenges:                                                    CH2 CH3  

Observations: Some of the new modules seem to rely excessively on configuration parameters. 

The selected higher level modules may harm the flexibility provided at the previous version of 

the algorithm. However, in overall it performs better than its predecessor. 

2.3.9.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.8283 0.9974 0.0026 0.1717 0.9631 0.8715 0.9262 

Dynamic Background 0.7616 0.9980 0.0020 0.2384 0.3838 0.7197 0.7291 

Intermittent object motion 0.4729 0.9820 0.0180 0.5271 5.4282 0.5093 0.7513 

Shadow 0.8108  0.9910  0.0090  0.1892  1.6516  0.8153  0.8302  

Thermal 0.5411 0.9974 0.0026 0.4589 2.8201 0.6646 0.9477 

Camera Jitter 0.7293 0.9908 0.0092 0.2707 1.8473 0.7538 0.8064 

Overall 0.6907 0.9928 0.0072 0.3093 2.1824 0.7224 0.8318 

 

2.3.10 Region-based video object segmentation RBVOS [15] 

 

2.3.10.1 Algorithm overview 

This technique is based on region-level analysis. A robust-to-illumination region  

segmentation is used as the analysis entity of a post-processing framework for region matching. 

A multi-layer region-based background model is used to account for multimodality (region 

variability). Differently than in [12], the temporal evolution of the segments (here regions, there 

superpixels) is used during the analysis, e.g. a new background model is built during the post-

processing. 

 

VOS category:                                                                                                 VOSC8 

Explicitly designed to tackle challenges:                                                    CH2 CH3 CH4  

Observations: We use our own implementation of this algorithm to obtain the results included 

at Table 11. Results have been obtained by refining those resulting from the application of 

BAYES [10]. Configuration parameters have not been specifically tuned.  

2.3.10.2 Results 

 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.8032 0.9887 0.0113 0.1968 1.9858 0.7566 0.7192 
Dynamic Background 0.9097 0.9889 0.0111 0.0903 1.2024 0.6128 0.5685 
Intermittent object motion 0.5594 0.9614 0.0386 0.4406 6.7657 0.5136 0.5408 
Shadow 0.8554 0.9767 0.0233 0.1446 2.8145 0.7079 0.6123 
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Thermal 0.7236 0.9937 0.0063 0.2764 2.2947 0.7515 0.8500 
Camera Jitter 0.6319 0.9838 0.0162 0.3681 2.5390 0.5651 0.5110 
Overall 0.7472 0.9822 0.0178 0.2528 2.9337 0.6512 0.6337 

Table 11 – RBVOS [15] results  

2.4 Comparative results 
In the light of the results included in Error! Reference source not found., Error! Reference 

source not found. and Error! Reference source not found. we observe that the overall 

operation of the evaluated algorithms takes place in an F-score range between 0.6 and 0.8. 

However, their performances among the video categories present remarkable differences.  

 

The baseline category is supposed to be the simplest one. There is no dynamism in the 

background and the camera is fully static during the whole recording. However, there are two 

factors that slightly worse the operation of two algorithms: Gamma [9] and BAYES [10]. 

Foreground objects in two of the sequences remain static for a long time, and these two 

algorithms do not handle correctly this situation, including them into the background model at 

some frames (see the False Negative Rate graph of Error! Reference source not found.). This 

complexity factor (CH4) harms the rest of their statistics. SGMM-SOD [7] performs the best in 

this category in terms of F-Score measure. PSP-MRF [12]  and SOBS-SC [13]  also obtain 

excellent results (Error! Reference source not found.). RBVOS [15] clearly improve the 

results of [10]. However, its overall performance in this category is harmed by the pre-computed 

results. This behaviour is repeated in all categories except for the Jitter, this exception is 

discussed below. 

 

The dynamic background category is one of the most challenging one. However, analysed 

algorithms present adequate results, according to the complexity of the scenarios. The Gamma 

[9] was not explicitly designed to be robust to background dynamics (CH2), but still performs 

better than PABS [11], that was supposed to adequately handle this challenge. They both fail in 

the adequate classification of the dynamic parts of the background (check the Percentage of 

Wrong Classifications bar graph in Error! Reference source not found.). Furthermore, by 

comparing recall and precision results in Error! Reference source not found., we see that 

most of the algorithms that achieve the best results in recall, significantly operate worse (5-

10%) in precision terms. In our opinion, this is one of the most relevant unresolved problems in 

VOS. A system that provides a flexible solution to model the background including in the 

model its non-stationary parts would be less accurate in the foreground detection mainly due to 

this flexibility. As a consequence, the frame-to-model comparison is less demanding and some 

foreground samples might be incorrectly used to feed and update the background model. The 

Chebyshev [8] is the algorithm that best faces this problem, and consequently the one that 

obtains the best results in this category (Error! Reference source not found.). 

 

The intermittent object motion category includes videos where objects remain static for a long 

time and scenarios where background is uncovered after a high amount of frames. These 

complexity factors (CH2 and CH4) severely harm the operation of those algorithms that do not 

explicitly include techniques to overcome them: Chebyshev [8] and Gamma [9]  (see Error! 

Reference source not found.). The same problem in the trade-off between background 

modelling flexibility and foreground discriminability arises in this category, especially in the 

operation of the BAYES [10] and the PABS [11] algorithms. The SGMM-SOD [7] is the most 

equilibrate, in overall, in this category. Observe that the operation of RBVOS [15] does not 

allow the recovery of areas which were completely wrong labelled by the feeding algorithm 

(BAYES [10]). 

 

According to the shadow category (shadows are also slightly present at the Baseline category), 

algorithms not considering them (mainly Gamma [9], but also BAYES [10] and PABS [11]), 

obtain the worst scores in this category; see how the shadows penalize these algorithms in the 
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Percentage of Wrong Classifications graph of Error! Reference source not found.. 

Furthermore, it is noticeable the improvement in the results produced by post-processing [10] 

with the robust-to-illumination RBVOS [15]. 

 

The thermal category is the most suitable to contain camouflage situations (CH5). The Gamma 

[9]  algorithm is the only one that obtains recall rates over 0.7 in these scenarios. This can be 

mainly explained by its neighbouring analysis strategy and by the nature of the features used 

during its analysis.  Camouflage is by far, as declared by the dataset designers, the less studied 

complexity factor. Observe, for instance, that according to the feature of analysis, there is low 

diversity among the evaluated systems. Almost all use the RGB colour vector (or even just the 

luminance) of the pixel; just one of them (SOBS-SC [13]) moves to a robust to illumination 

colour space; only one includes the gradient as an additional feature (PABS [11]) and just one 

related the feature value with its surroundings (RBVOS [15]).  

 

The camera jitter category seemed to be one of the most difficult, as camera is moving by an 

unpredictable wind. This complexity entails disparity of operation among the algorithms 

(observe Error! Reference source not found.). RBVOS [15] decreases the performance of 

BAYES [10] in this scenario. This is mainly due to its regional strategy. Where BAYES 

misclassifies pixels, RBVOS misclassified associated regions, then increasing the quantity of 

wrong classified pixels. On the contrary, the performance of the other regional based approach 

(PSP-MRF [12] ) is the best for this scenario. Such difference in operation can be related to the 

pixel’s aggrupation nature. [12] segments the image in superpixels, while [15] uses regions. 

 

 
 

Figure 2 – Comparative results Recall and Precision 
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Figure 3 – Comparative results False Positive and False Negative Rate 

 

 

 

 

 
 

Figure 4 – Comparative results F-Score Measure and Percentage of Wrong Classifications 
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2.5 Conclusions 
In recent years researchers have improved the classical VOS algorithms in terms of quality, 

exportability to different scenarios, efficiency and applicability. Existing challenges in VOS 

have been discovered, analysed and categorized, and both parametric and non-parametric 

algorithms perform well enough in their presence if they include specific techniques to face 

them.  Nevertheless, there exist severe problems that, considering the influence of the VOS 

results in high level tasks as tracking or object and event recognition, need to be solved. 

 

We have previously mentioned the need to confront the sensitivity-discriminability problem. 

The question is: can we adequately account for highly dynamic backgrounds without degrading 

the system performance in foreground discrimination and, inversely, are we capable of 

designing a system accurate enough to discriminate camouflaged foreground while maintaining 

its capability to adapt to changing backgrounds? 

 

In our opinion, it is important to evaluate the limits of applicability of pixel level segregation. 

We think that the inclusion of accurate and robust high level modules may improve the results 

and would take complexity out of the models (as it is suggested by the results of regional 

approximations [12] and [15]). However, the use of this kind of post-processing modules 

increases the computational cost of the system while its operation is severely conditioned to 

their preliminary VOS stage.  

 

Finally, it is necessary to remark that presented techniques might not work correctly in crowded 

scenarios (categories S3 and S4 of Error! Reference source not found.) as they were designed 

under the premise that background samples of each pixel are majority along the video. We need 

to rethink its applicability, take advantage of their scopes and overcome their limitations. 

 

2.6 Future research lines 
Considering the analysed results, the aforementioned conclusions and the existing problems, we 

propose three main lines of future research. 

2.6.1 Refinement by post-processing techniques   

Usually, some kind of post processing technique is used to improve VOS’s results. Among 

them, one of the most common is refinement by morphological operations. These are used 

either to discard the classification as foreground of noisy pixels (erosion) or to fill small miss-

classifications due to camouflage (dilatation). The problem arises when these operations 

severely degrade the tightness of the segregation at the object’s boundaries. In our opinion, 

techniques similar to the ones proposed at [12] and [15], which refine by using tight to 

foreground superpixels or regions, would better improve the quality of the obtained segregation 

masks without degrading them.    

2.6.2 Use of alternative features. 

Aiming to improve the operation of VOS systems in camouflage situations while maintaining 

their robustness in background modelling, we propose to follow the paved path of [12] and [15] 

and enhance the regional features with the pixel surrounding texture. Moreover, we aim to 

research alternative modelling strategies including deformable background models.   

2.6.3 Include semantics in the descriptions 

Nowadays, high level tasks should not rely in the output from VOS systems when analysing 

crowded scenarios. Obtained masks and per-pixel classification are inaccurate at the object’s 

boundaries; results usually include several objects of interest joined at the same connected 

component. Although the use of feed-back strategies might improve the whole process path in 
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scenarios of categories S3 and S4, the definition of these strategies is complex and its use entails 

the inclusion of heavy computational looping modules. Alternatively, the use of higher-semantic 

features directly in the segregation process (such as person-not person classification, floor or 

ceiling location, dynamic backgrounds isolation, etc.,) may provide a simpler and more efficient 

scheme to operate in these scenarios. The segments (either regions or superpixels) may provide 

a robust entity to include this new knowledge in the analysis modules. 
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3 Segmentation in moving camera scenarios 

3.1 Introduction 
In sequences with camera motion, the static background can no longer be inferred from the 

unchanging frame regions, which renders fixed-camera VOS algorithms "per se" useless even in 

the simplest scenarios. Nevertheless, changes in the frames induced by camera motion can 

usually be described by compact parametric models.  This aspect is exploited by most moving 

camera VOS algorithms, which start estimating the camera motion by solving a regression 

problem over the motion data (spatio-temporal derivatives, frame correspondences, motion 

vectors...). Then, the estimated parameters can be used to find the moving objects by: (a) 

compensating the camera motion and applying some adapted fixed camera segmentation 

technique, (b) identifying frame regions with significant deviation from the camera motion in 

the frame optical flow, or (c) some combination of both approaches.  

 

Improvements on segmentation algorithms mostly focus on the proper segmentation stage, 

solving camera motion estimation (CME) with just standard well known techniques and rarely 

questioning the results. But the simplicity of the usual procedures to compute this camera 

motion and the compactness of its representation can be misleading. Actually, the proper 

camera parameters are not always easy to obtain and the derived values will probably 

misrepresent the real camera motion unless the assumptions implicitly made by the employed 

techniques are conveniently met in the scene. Worst of all, wrongly estimated camera motion 

parameters can have a devastating effect in segmentation: unlike any of the challenges discussed 

in section 2.2 (i.e. shadows, dynamic background), which mostly affect the involved frame 

areas, problems in CME can ruin the whole segmentation result. 

 

This strongly suggests focusing our evaluation in challenging situations for the CME stage that, 

if improperly handled, will prevent the recovery of the camera motion parameters, eventually 

impairing the performance of any segmentation algorithm. The influence of additional 

complexity factors (independent from camera motion) on segmentation is already being studied 

in the fixed camera section, from where general results can be extended in most cases.  

3.2 Selected evaluation scenario 
In the design of this evaluation scenario we have analyzed which elements might be particularly 

challenging for the CME techniques typically used in segmentation algorithms. Most common 

techniques are based on the optimization of robust estimators (most times, M-Estimators) 

starting from (non-robust) Least-Squares solutions. This is known to properly handle outliers 

from small objects, but large ones can seriously degrade the result. In particular, motion from 

large dominating objects can be mistaken for the real camera motion (which may be an 

understandable result, but not the one most segmentation algorithms expect). On the other hand, 

large yet non-dominant objects -which are even more common- can also cause problems, 

making the estimators yield bridging fits: trade-off estimates averaging the motion from several 

structures and/or gross outliers).  

 

Large objects are not rare in every-day video sequences. However, CME algorithms are not 

typically evaluated in this scenario, which makes it difficult to find public data-sets with 

sequences specifically involving camera motion and large objects. Let alone complementary 

ground-truth data in the form of parameters (which is unusual, except in cases of synthetically 

generated sequences) or objects masks (necessary to evaluate the parameters via the motion 

compensation error in the background areas).   
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Therefore, we have compiled a small dataset of 5 sequences with its object masks specifically 

for this evaluation. These sequences were cut from different videos from the MPEG-7 data set 

[16] and the object masks obtained at every frame by manual segmentation. One of the 

advantages of this dataset is that it includes sequences from several genres, which favors the 

representativity of the results.  

 

Despite the small number of sequences considered, they still cover a number of different 

situations which may affect the performance of CME algorithms.  This includes cases of 

isolated and simultaneous objects, similar and different concurrent motions, and various levels 

of homogeneity in the background. Intuitively, situations where the camera/background motion 

becomes virtually smaller than other motions in the frame will make CME harder. This may 

occur when several simultaneous objects have similar motions (which are likely to be absorbed 

into a single larger motion) or when the background has large homogeneous areas. Table 12 

summarizes the characteristics of the 5 sequences in our test set and Figure 5 shows some 

example frames from each of them. 

 

Seq. 

ID 

Number 

frames 

Simultaneous 

objects 

Similar 

motions 

Background 

homogeneity 

1 188 No - Medium 

2 57 No - Low 

3 114 No - High 

4 75 Yes Yes Medium 

5 143 Yes No Medium 

Table 12 – Characteristics of the sequences in our test-set 
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4 

   

5 

   

 

Figure 5 –Sample frames of the sequences in our test-set 

 

The quality of the camera motion parameters will be assessed via the mean absolute error 

(MAE) between the current frame and the motion compensated previous frame evaluated just in 

the background regions of the current frame.  Note that the segmentation-based metrics 

presented in section 2.2 will not be used. This is because CME -which does not derive the 

segmentation masks required by these metrics- is being studied separately from segmentation, 

so also avoiding the influence of the many additional factors influencing segmentation quality.  

 

The last consideration in our evaluation scenario is the temporally independent operation. This 

imposes a restriction to the evaluated CME algorithms: camera motion between two consecutive 

frames must not rely on any information derived in the past (as object masks or motion 

parameters). Whilst we agree that in real applications this information can benefit robustness 

and efficiency, it also makes more difficult to draw conclusions on the strengths of a particular 

algorithm: good performance in a particular frame may only be due to previous information 

derived in less challenging situations. 

3.3 Algorithms 
In this section we briefly describe the two algorithms that we have considered for evaluation. 

The first one is a GME technique which follows a standard optimization and interestingly, is 

oriented to segmentation. The second one is an innovative technique currently being developed 

in the VPULab intended to robustly extract camera motion even in presence of very large 

objects (not yet available in the literature; the results in this document come from our last 

version)   

 

3.3.1 Robust Global Motion Estimation Oriented to Video Object 
Segmentation (RGME-VOS) [17] 

RGME-VOS uses a classic hierarchical differential scheme to estimate the camera motion. 

Overall, a robust function of the motion compensation residuals is optimized via a Newton–

Raphson technique at the different levels of a multiresolution pyramid.  The robust function 

definition depends on whether object information from previous frames is available or not. 

However, because of the temporal constraint of our scenario, we just use the version proposed 

for the absence of temporal information (which is employed in the first frame in the original 

algorithm). This function exploits the fact that frames may contain objects via an outlier 

rejection mechanism based on the analysis of local neighborhoods in the error between the 

current frame and the motion-compensated previous frame. 
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3.3.2 Robust Global Motion Estimation in presence of Large Objects 
(GME-LO)   

This algorithm is intended to robustly extract the camera motion even if large objects are 

present. For doing so, it uses specific tools and procedures to avoid: (a) mistaking the motion of 

large objects for the camera motion and (b) the convergence to bridging fits.  The main elements 

of the algorithm are:  

- A random sampling optimization scheme to bypass the initialization  problem (which is 

convenient because initialization in presence of large objects is difficult and improper 

initialization  is one the main causes of bridging fits)  

- An effective objective function that: 

o Can have minima for populations with only the relative majority of the data (i.e. 

it can find the camera motion even if the background size is smaller than 50 %). 

o Does not need an a-priori scale as other estimators like RANSAC (which is 

convenient because the scale value is difficult to estimate in presence of large 

objects). 

o Is inspired in non-parametric density power techniques that can tolerate very 

large amounts of outliers (in the order of 85 %) and avoid bridging fits 

- A heuristic to tell the background from the objects that uses alternative criteria to the 

number of inliers. With this heuristic it can identify the camera motion even if some 

object is larger than the background. 

3.4 Comparative results 
In the different plots of Figure 6 we show the MAE error at every frame for all the sequences of 

the data set considered for evaluation. Frames where GME-LO more clearly outperforms 

RGME-VOS (yielding much lower errors) are precisely those where moving objects occupy a 

large percentage of the frame space. On the other hand, frames with similar performance either 

do not include large objects or these objects remain mostly static (which includes the case where 

motion is limited to some small parts).  
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Figure 6 – CME accuracy (via the background MAE error) at frame  

resolution for the 5 sequences of our data set 

3.5 Conclusions 
Whilst commonly neglected, the accuracy of the CME stage can have tremendous influence in 

the whole segmentation result.  Given this importance, as well as the many additional factors 

also influencing segmentation, it seems reasonable to isolate the evaluation of CME stage from 

the segmentation itself. In this evaluation we have found that situations involving large objects –

which are completely normal in every-day videos– can make standard techniques used for CME 

fail.  However, we should also note that, if the restriction of not using previously derived 

information were removed, these standard techniques would yield much better results than 

reported in this document. This could be seen, for instance, in the –perfectly natural– 

circumstance of large objects entering the scene slowly. Without the temporal restriction, the 

number of outliers that the involved robust estimator would have to recognize would be small, 

as outliers also existing in previous frames could be discarded beforehand. Nevertheless, it is 

extremely valuable to have CME techniques that can provide robustness to large objects even in 

absence of temporal information. These techniques, which will often be more computationally 

demanding, can always be used when temporal information is unavailable (e.g. initial frame) or 

becomes unreliable (e.g. after shot changes or when a previously static object starts to move). 

 



   

 

TR.01: Evaluation Results and Future Research Lines   27  

 

4 People Modelling and Detection 

4.1 Introduction 
Automatic people detection in video sequences [18][19][20] is one of the most challenging 

problems in computer vision. The complexity of the people detection problem is mainly based 

on the difficulty of modelling persons because of their huge variability in physical appearances, 

articulated body parts, poses, movements, points of view and interactions among different 

people and objects. This complexity is even higher in typical real world surveillance scenarios 

such as airports, malls, etc., which often include multiple persons, multiple occlusions and 

background variability. 

4.2 Selected evaluation scenario 
The chosen experimental corpus, Person Detection dataset (PDds) [21], mainly excels other 

datasets in the amount of sequences (90 videos) and variability of sequences. It has been divided 

in two evaluation datasets. The first dataset, named A, has been selected to evaluate the different 

approaches at every complexity level, it includes the first 29 sequences from the experimental 

corpus. These sequences include the five different complexity categories depending on the 

described/defined people detection critical factors (from C1 to C5) or according to the 

previously described scenario classification (from S1 to S3), i.e, S1 includes the complexity 

categories C1 and C2, S2 includes the C3 and C4 and S3 includes the C5. The experimental 

dataset includes both non-rigid and rigid people/objects differing in size, motion and textural 

appearance. These people/objects are involved in a number of interactions and in different 

contexts, like typical every-day situations or surveillance video scenarios. Regarding the 

backgrounds, it includes in-door and out-door scenarios with different background complexities. 

The second dataset, named B, has been selected to evaluate more thoroughly the highest 

complexity category, i.e., only category C5 or scenario S3 (It is necessary to remark that after 

some preliminary experiments, the described techniques cannot work correctly in crowed and 

complex scenarios ,category S4 of Error! Reference source not found., as they are designed. 

We need to rethink its applicability, take advantage of their scopes and overcome their 

limitations). It includes the following 61 sequences from the experimental corpus. The 

sequences have been extracted from the TRECVID 2008 dataset [22], namely, the ones for the 

surveillance TRECVID event detection task recorded at London Gatwick International Airport. 

This dataset contains highly crowded scenes, severely cluttered background, people at different 

scales and people completely static along the whole sequences. Due to the small size of the 

objects at the top of the image, during the annotation of sequences, the top 15% of the images 

has been discarded. 

A summary of the complexity levels and scenario classification of both evaluation datasets is 

shown in Table 13. 

 

Category Scenario #Sequences Complexity 

  Dataset A Dataset B Classification Background 

C1 S1 6 0 Low Low 

C2 S1 6 0 Medium Low 

C3 S2 4 0 Medium Medium 

C4 S2 5 0 High Low 

C5 S2 4 0 High Low 

C5 S3 4 61 High High 

Table 13 – Sequences categorization people detection evaluation datasets. 
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In order to evaluate different people detection approaches, the evaluation methodology 

described in [1] has been followed. 

4.3 Algorithms 
In this section, we describe different approaches from the state of the art. We have selected 

seven diverse people detection approaches: Edge [23], Fusion [24], HOG [25], ISM [26], TUD 

[27], DTDP [28] and IMM [29]. 

4.3.1 Edge[23] 

4.3.1.1 Algorithm overview 

The Edge people detector is based on the body part-based algorithm proposed in [30], but 

proposing modifications in order to achieve real time performance in video surveillance 

scenarios. An individual human is modelled as an assembly of natural body parts. The main idea 

consists of identifying characteristic edges of each body part and generating four edge models of 

body parts (body, head, torso and legs). The object detection approach is a combination of 

segmentation and exhaustive search: the initial objects candidates to be person are extracted 

using background subtraction and then those selected candidates are scanned with four 

independent edge feature detectors previously trained. 

4.3.1.2 Results 

 

 Dataset A Dataset B 

AUC-PR (%∆) S1.C1 S1.C2 S2.C3 S2.C4 S3.C5 S3.C5 

Edge 0.98 0.93 0.85 0.89 0.70 0.59 

Table 14 – Edge results. 

4.3.2 Fusion[24] 

4.3.2.1 Algorithm overview 

The Fusion people detector is a real time detection approach based on segmentation and a 

holistic person model. The initial objects candidates to be person are extracted using 

background subtraction and the holistic person model is the combination or fusion at decision 

level of three simple person models: ellipse fitting [31], ghost [32] and aspect ratio. 

4.3.2.2 Results 

 

 Dataset A Dataset B 

AUC-PR (%∆) S1.C1 S1.C2 S2.C3 S2.C4 S3.C5 S3.C5 

Fusion 0.78 0.81 0.60 0.69 0.48 0.44 

Table 15 – Fusion results. 

 

 

4.3.3 HOG[25] 

4.3.3.1 Algorithm overview 

The HOG people detector is based on exhaustive search and a holistic person model. It consists 

in scanning the full image looking for similarities with the chosen person model, evaluating 
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different detection windows with a classifier at multiple scales and locations. The chosen person 

model is based on appearance information using the Histogram of Oriented Gradients. And the 

final decision is based on a previously trained SVM classifier. 

4.3.3.2 Results 

 

 Dataset A Dataset B 

AUC-PR (%∆) S1.C1 S1.C2 S2.C3 S2.C4 S3.C5 S3.C5 

HOG 0.92 0.86 0.74 0.82 0.71 0.66 

Table 16 –HOG results. 

 

4.3.4 ISM[26] 

4.3.4.1 Algorithm overview 

The ISM is a generative model for object detection and has been applied to a variety of object 

categories including cars, motorbikes, animals and pedestrians. The ISM people detector is 

based on exhaustive search and a holistic person model. It consists in scanning the full image 

looking for similarities with the chosen person model at multiple scales and locations by local 

features matching. The chosen person model is based on appearance information using the SIFT 

features. 

4.3.4.2 Results 

 

 Dataset A Dataset B 

AUC-PR (%∆) S1.C1 S1.C2 S2.C3 S2.C4 S3.C5 S3.C5 

ISM 0.95 0.91 0.80 0.84 0.71 0.69 

Table 17 – ISM results. 

 

 

4.3.5 TUD[27] 

4.3.5.1 Algorithm overview 

The TUD people detector is based on feature-based exhaustive search and a part-based person 

model. It is a part-based adaptation of the original ISM using pictorial structures. The 

appearance of body parts is modelled using densely sampled shape context descriptors and 

discriminatively trained AdaBoost classifiers. As a result, it presents a strong discriminatively 

trained appearance model and a flexible kinematic tree prior on the configurations of body parts. 

4.3.5.2 Results 

 

 Dataset A Dataset B 

AUC-PR (%∆) S1.C1 S1.C2 S2.C3 S2.C4 S3.C5 S3.C5 

TUD 0.93 0.88 0.75 0.84 0.67 0.56 

Table 18 – TUD results. 
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4.3.6 DTDP[28]  

4.3.6.1 Algorithm overview 

The DTDP people detector is based on scanning-based exhaustive search and a part-based 

person model. It is a part-based adaptation of the original HOG detector. It proposes a object 

detection system based on mixtures of multiscale deformable part models where each 

deformable body part is modelled as the original HOG detector. 

4.3.6.2 Results 

 

 Dataset A Dataset B 

AUC-PR (%∆) S1.C1 S1.C2 S2.C3 S2.C4 S3.C5 S3.C5 

DTDP 0.96 0.92 0.81 0.86 0.74 0.68 

Table 19 – DTDP results. 

 

4.3.7 IMM [29] 

4.3.7.1 Algorithm overview 

The IMM people detector is based on feature-based exhaustive. The chosen person model is 

based in the characteristic movements of people using the Implicit Shape Model (ISM) 

Framework and the MoSIFT interest points detector and descriptor.  It consists in scanning the 

full image looking for similarities with the chosen person model at multiple scales and locations 

by local features matching. The chosen person model is based on motion information using the 

MoSIFT features. 

4.3.7.2 Results 

 

 Dataset B with motion 

AUC-PR (%∆) S3.C5 

IMM 0.60 

Edge+IMM 0.62 

Fusion+IMM 0.49 

HOG+IMM 0.68 

ISM+IMM 0.67 

TUD+IMM 0.62 

DTDP+IMM 0.70 

Table 20 –IMM results and appearance and motion combinations. 

 

 

4.4 Comparative results 
In this section, we describe the experiments performed over the experimental dataset and 

including different approaches that cover all the people detection issues identified from the state 

of the art. As we have already commented, we have selected seven diverse people detection 

approaches: Edge, Fusion, HOG, ISM, TUD, DTDP and IMM. According to the chosen object 

detection approach, Edge combines segmentation and exhaustive search, Fusion is based only 

on segmentation and the rest of them are based on exhaustive search. According to the chosen 

person model, the IMM includes the use of motion, appearance and their combination, the rest 
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of them are based only on appearance: holistic (Fusion, HOG, ISM) or part-based (Edge, TUD, 

DTDP). 

 

 Object Detection Person Model 

 Segmentation Exahustive 

Search 

Motion Appearance 

    Holistic Part-based 

Edge      

Fusion      

HOG      

ISM      

TUD      

DTDP      

IMM      

Table 21 – Proposed People Detectors classification. 

 

 

The Edge, Fusion and IMM results have been obtained with the original code, the HOG results 

have been obtained using the available binaries (http://pascal.inrialpes.fr/soft/olt/), the ISM 

results have been obtained using the available code and binaries 

(http://www.vision.ee.ethz.ch/~bleibe/index.html), the TUD results have been obtained using 

the available code (http://www.d2.mpi-inf.mpg.de/andriluka_cvpr09) and the DTDP results 

have been obtained using the available code (http://www.cs.brown.edu/~pff/latent/). 

Despite the fact that all algorithms performance depends on the hit rate, or confidence level of 

the decision, we only classify objects detected in previous stages as person or non-person. 

Consequently, the maximum/minimum Recall and Precision will be limited by previous stages. 

Edge and Fusion are mainly limited by the segmentation step. Moreover, HOG, ISM, TUD, 

DTDP and IMM, are limited by the image scanning. 

4.4.1 Evaluation dataset A 

Firstly, we evaluate and compare the appearance based approaches at every complexity level 

using the evaluation dataset A. Figure 7 shows the averaged detection performance in terms of 

Recall vs. (1-Precision) curves and Table 22 shows the results in terms of AUC-PR, in both 

cases the results are for each complexity category included within the used video dataset A. 

The results show clearly that all algorithms perform worse at higher complexity categories 

(from C1 to C5). However, it is observed that all approaches obtain generally worse results at 

category C3 than at category C4, due to the great influence of the background complexity in 

category C3 and thus the generation or extraction of the initial object hypotheses or candidates 

to be a person in the scene is more difficult. On the other side, the complexity of the category 

C4 lies on the classification of those initial candidates. 

The Fusion approach gets the worst results. The use of segmentation makes easier the 

classification stage, allowing the approach to reach high recall results, but the use of such a 

simplified person model and all the segmentation problems (under/over segmentation) reduce 

the global precision rate. The Edge approach gets good results in all complexity categories and 

similar to the other approaches not based on segmentation. It is due to the use of a more 

complex person model and the combination of segmentation and exhaustive search. Despite the 

fact that the combination of segmentation and exhaustive search reduces the segmentation 

problems, these problems are magnified in complex background scenarios (C3-C5) where it is 

quite difficult to obtain a reliable segmentation. 

The exhaustive search approaches are more robust to scale and pose variations and therefore 

more reliable in complex environments than those based on segmentation. Even so, the 

background complexity still has a negative impact in the results (C3). Moreover, unlike the 

http://pascal.inrialpes.fr/soft/olt/
http://www.vision.ee.ethz.ch/~bleibe/index.html
http://www.d2.mpi-inf.mpg.de/andriluka_cvpr09
http://www.cs.brown.edu/~pff/latent/
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previous case, the classification stage is not simplified, it is even more complex because the 

approach must deal with a great number of negative examples (potential false positive 

detections), reducing the recall rate in order to maintain the precision rate. The HOG and TUD 

approaches show similar results in all complexity categories but the ISM and DTDP get better 

results. The ISM is a holistic approach but with a great flexible person model based on spatial 

feature probability distribution, and the DTDP is a body part-based variation of the HOG 

approach. 

  
C1 C2 

  
C3 C4 

 

 

C5  

Figure 7 – Precision-Recall results per complexity category of people detection dataset A. 

AUC-PR (%∆) Edge Fusion HOG ISM TUD DTDP IMM 

S1.C1 0.98 0.78(-20) 0.92(-6) 0.95(-3) 0.93(-5) 0.96(-2) - 

S1.C2 0.93 0.81(-13) 0.86(-8) 0.91(-2) 0.88(-5) 0.92(-1) - 

S2.C3 0.85 0.60(-29) 0.74(-13) 0.80(-6) 0.75(-12) 0.81(-5) - 

S2.C4 0.89 0.69(-22) 0.82(-8) 0.84(-6) 0.84(-6) 0.86(-3) - 

S3.C5 0.70(-5) 0.48(-35) 0.71(-4) 0.71(-4) 0.67(-9) 0.74 - 

Table 22 – Area under the Precision-Recall curve (AUC-PR) average for each complexity category 

of evaluation dataset A. Percentage increase (%∆) calculated with respect to the best result for each 

complexity category. (IMM results do not apply). 
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4.4.2 Evaluation dataset B 

In this section, we evaluate more thoroughly the highest complexity category (C5) using the 

dataset B. Table 23 shows the results in terms of AUC-PR of dataset B. Due to the greater 

complexity of the sequences extracted from TRECVID (the content set contains challenging 

scenarios, crowds and a wide range of scales), the results are worse than those obtained in the 

dataset A. 

In this case, due to the higher sequences complexity, all the approaches get worse results than 

with the dataset A. Both approaches based on segmentation, the Edge and Fusion, obtain worse 

results than the other approaches from the state of the art. As already commented, the main 

problem of these approaches is the difficulty of making a reliable segmentation 

(foreground/background) in complex scenarios. However, the sequences extracted from 

TRECVID present an additional difficulty to both approaches: the sequences include people 

completely static along the whole sequences. Both approaches extract the objects candidates to 

be a person using motion information (background subtraction), therefore it is not able to extract 

those static objects/people, reducing the Recall rate and therefore the overall performance. 

The results also show that the approaches based on exhaustive search also get worse results than 

with dataset A. However, except the TUD approach, they are more stable in more complex 

scenarios because they are more robust to scale and pose variations and more robust to the 

background complexity. 

 

AUC-PR (%∆) Edge Fusion HOG ISM TUD DTDP IMM 

S3.C5 0.59(-13) 0.44(-35) 0.66(-3) 0.69(-1) 0.56(-18) 0.68 - 

Table 23 – Area under the Precision-Recall curve (AUC-PR) average of evaluation dataset B. 

Percentage increase (%∆) calculated with respect to the best result. (IMM results do not apply). 

4.4.3 Evaluation dataset B with motion 

In this section, we evaluate the dataset B including the people detector based on motion IMM 

and all the appearance and motion combinations (Edge+IMM, Fusion+IMM, HOG+IMM, 

ISM+IMM, TUD+IMM and DTDP+IMM). In order to train the people motion model, the 

evaluation dataset B has been divided in training and test. To be homogeneous, the appearance 

based detectors approaches also have been evaluated on the same video sequences, the test 

dataset. As in the experiments in [29], the training dataset is composed of 25 sequences and the 

test dataset is composed of the other 36 sequences. Table 24 shows the results in terms of AUC-

PR of test dataset. 

The results show that the IMM approach gets good results in complex or realistic scenarios and 

comparable to the other approaches from state of the art. The IMM is based only on motion, so 

it is only able to detect moving people. For this reason, the IMM approach in general is able to 

get high precision rates but low recall rates. Even so, in environments as complex as these ones, 

the use of motion information obtains results close to the use of appearance information. The 

combination of appearance and motion information (Edge+IMM, Fusion+IMM, HOG+IMM, 

ISM+IMM, TUD+IMM and DTDP+IMM) improves the global results in all the cases. Thus, it 

is clear that human motion provides useful information for people detection and independent 

from appearance information. 

 

AUC-PR (%∆¹) Edge Fusion HOG ISM TUD DTDP IMM 

S3.C5 0.58(-13) 0.46(-31) 0.66(-1) 0.64(-4) 0.56(-16) 0.67 0.60(-10) 
 

AUC-PR 

(%∆²) 
Edge+IMM Fusion+IMM HOG+IMM ISM+IMM TUD+IMM DTDP+IMM 

S3.C5 0.62(+7) 0.49(+7) 0.68(+3) 0.67(+5) 0.62(+11) 0.70(+4) 
 

Table 24 – Area under the Precision-Recall curve (AUC-PR) average of evaluation dataset B 

without and with motion information. Percentage increase (%∆
1
) calculated with respect to the best 

result or percentage increase (%∆
2
) calculated with respect to single appearance versions. 
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4.5 Conclusions 
The experimental results over the evaluation dataset show the people detection problems in 

video sequences. According to the chosen object detection approach, the use of segmentation 

makes easier the classification stage. However, they must deal with all the segmentation 

problems (under/over segmentation). The combination of segmentation and exhaustive search 

reduces these problems but they are still a drawback especially in complex scenarios where 

these problems are magnified. The exhaustive search approaches are more reliable in complex 

environments than those based on segmentation. However, unlike the previous case, the 

classification task is not simplified, it is even more complex because the approach must deal 

with a great number of negative examples (potential false positive detections), reducing the 

recall rate in order to maintain the precision rate. According to the chosen person model, in 

general, the use of simplified person models gets worse results mainly in terms of Precision than 

those more complex person models. And finally, the motion information is less characteristic 

than the appearance of the people, but the combination of motion and appearance shows to be 

useful even in complex scenarios. 

4.6 Future research lines 
Based on the results and discussions of this document, we plan the following future research 

lines: 

4.6.1 Expand the evaluation dataset PDds 

Expand the evaluation dataset PDds. The proposed experimental dataset PDds includes a great 

variability of scenarios with different background complexities and it also includes a great 

variability of people appearance and multiple interactions with objects and/or persons. 

However, we propose to extend the contents of the dataset and make use of every sequence 

from the CVSg dataset[33] (recorded in a chroma studio and having the possibility of 

combining the foreground with different backgrounds), in order to be able to analyse 

independently the background and foreground factors. 

4.6.2 Improve or refine segmentation 

As noted in the experimental results, our combination of segmentation and exhaustive search 

reduces the segmentation problems (under/over segmentation), but these problems are 

magnified in complex scenarios where it is quite difficult to obtain a reliable segmentation. So, 

we propose the study of techniques for multimodal background modelling, noise removal, 

shadows detection, etc, in order to refine the background subtraction in complex scenarios. 

4.6.3 Appearance and motion fusion 

We propose the study of different fusion/combination techniques between the appearance and 

motion detectors to improve the Recall without compromising the Precision, or even the 

creation of a single integrated Implicit Shape-Motion Model (ISMM), using the full MoSIFT 

description. 
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5 Tracking 

5.1 Introduction 
Video tracking algorithms basically aim at identifying the candidate position (pixel coordinates) 

within a video frame where a target model is most likely to be present. The target model is 

usually a predefined region of interest (e.g., rectangle, circle, ellipse) either automatically or 

semi-automatically delimited within a given image. The different algorithms basically differ in 

the representation of the target model and the method applied in order to compare the 

representations of both that target model and the models corresponding to the possible candidate 

positions. The aforementioned methods typically take into account visual cues such as colour, as 

well as the history of candidate positions that have been found throughout the video sequence.  

Multi-tracking algorithms have the same underlying principles as described above, although 

they support several target models for a same video sequence. A multi-tracking algorithm can 

trivially be obtained by running multiple independent instances of a single-target tracking 

algorithm, one per target model. However, algorithms specifically tailored to multiple tracking 

can be more effective by taking into account the possible interactions among target models, 

such as occlusions and groupings, which are the main challenges in video tracking. 

5.2 Selected evaluation scenario 
For video object tracking, the Single Object Video Tracking dataset - SOVTds (see [1] for 

further details), was selected, as it was created focusing on the main problems that affect video 

object tracking in surveillance videos. As a tracker can operate in different conditions in which 

the same problem appears, we propose to organize them into four situations ranging from 

completely controlled (e.g., synthetic sequences) to uncontrolled (e.g., real-world sequences). 

Moreover, the complexity of the tracking problems is estimated for each set of sequences:  

1. Synthetic sequences (L1): It is composed of synthetic sequences that provide controlled 

testing conditions allowing to isolate each problem. They consist on a moving ellipse in 

a black background that can contain squares of the same or different colour (acting as, 

respectively, similar or occlude objects). 

2. Laboratory sequences (L2): It provides a natural extension of the L1 situation by 

representing real test data in a laboratory setup under controlled conditions. An object 

with a simple colour pattern was used for generating such data. 

3. Simple real sequences (L3): It includes data from previously existing datasets that have 

been captured in uncontrolled conditions. We have extracted clips from the original 

sequences that contain isolated tracking problems. 

4. Complex real sequences (L4): The last situation contains the most complex sequences, 

which are clips from other datasets that include several problems. Once the algorithms 

are tested for each problem individually, it is a good idea to check the performance in 

more realistic (and complex) situations. 

Each of the first three sets of sequences (L1, L2 and L3) are divided into seven subcategories. 

Each of these subcategories corresponds to the major problems of tracking: Complex 

movement, illumination local, illumination global, noise, occlusion, scale changes and similar 

objects. Also in L2 category there are three videos for each of the seven subcategories, 

corresponding to low, medium and high difficulty. The last set of sequences (L4) is divided into 

three subcategories: cars, faces and people. 
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Figure 8 – Sample frames for the situations of the proposed dataset (from top row to bottom row): 

synthetic (L1), laboratory (L2), Simple real (L3) and Complex real (L4). In addition, samples of 

some tracking-related problems are also presented for each column (from left to right): abrupt 

illumination change, noise, occlusion, scale change and (colour-based) similar objects. 

 

The following table shows the relation between the SOVTds categories and the proposed 

scenario classification in the EventVideo project: 

 

Scenario Complexity Density 
SOVTds 

sequences 

S1 Low Low 

L1, L2, L3, 

L4(cars), 

L4(people) 

S2 High Low 

L2(high), 

L3, 

L4(faces), 

L4(cars) 

S3 Low High 
L3, 

L4(people) 

S4 High High - 

Table 25 – Relation between the SOVTds categories and the EventVideo categories. 

 

In order to evaluate the accuracy selected tracking algorithms, the chosen metric was SFDA 

(Sequence Frame Detection Accuracy) which calculates for each frame the spatial overlap 

between the estimated target location and the ground-truth annotation (see [1] for further 

details). This metric has been selected because it evaluates the cumulative spatial accuracy 

(mean) of the algorithm for the complete sequences. 

 
 

 



   

 

TR.01: Evaluation Results and Future Research Lines   37  

 

 

where  and  represent the number of ground-truth and target annotations respectively in 

the th frame. 

5.3 Algorithms 

5.3.1 Colour-based mean-shift (MS) [34] 

5.3.1.1 Algorithm overview 

This single-target tracking algorithm represents the target model by the colour histogram of all 

pixels belonging to the given elliptical region of interest to be tracked. That histogram is 

computed in such a way that pixels close to the target’s centre have a larger weight than those 

away from it according to the Epanechnikov kernel function. This weighting is done in order to 

lower the influence of pixels close to the boundaries of the region of interest, which are assumed 

to be less confident that those close to the centre.  

The candidate position within the current video frame is the one that maximizes the 

Bhattacharyya distance between its associated colour histogram, which is computed in the same 

manner as the histogram of the target model, and the latter. That candidate position is found by 

iterating from the previously known target position until convergence by applying the mean-

shift procedure to an image of weights. The larger the weight corresponding to a certain image 

position the larger the similarity between the colour histograms associated with both that 

position and the previously known target position.  

The algorithm can adapt to scale changes by slightly modifying the width of the Epanechnikov 

kernel function, thus slightly changing the area of the effective image region over which all 

histograms are computed. Three widths are considered: the previous width without changes and 

after both increasing it and decreasing it by 10%. The width that yields the maximum 

Bhattacharyya distance for the final candidate position is the one that denotes the change of 

scale. 

A simple variation of the algorithm described above, referred to as background-weighted 

histogram (BWH), aims at reducing the interference of background pixels in the tracking 

process by taking into to account the colour histogram of the background surrounding the target 

model in order to modulate the colour histograms associated with the target model and the 

candidate positions. In particular, when a bin from the background histogram has a significant 

value, the corresponding bins for the target model and the candidate positions are given a low 

weight. The background histogram is computed in a region three times bigger than the area of 

the target model. 
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5.3.1.2 Results 
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Figure 9 – MS SFDA for L1, L2 and L3 videos. 
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Figure 10 – MS SFDA for L4 videos. 

 

MS algorithm does not stand out in any of the categories of the sequences L1 and L2. Its results 

are in the top 3 in most of the comparisons of the two cited sequences sets. For the L3 

sequences, the results are slightly better than the results of the other algorithms for the 

categories complex movement and similar objects. In addition, MS gives better results for the 

scale change category. 
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5.3.2 Template matching (TM) [35] 

5.3.2.1 Algorithm overview 

This single-target tracking algorithm represents the target model by the subimage corresponding 

to the given rectangular region of interest to be tracked. The target model (template) is then 

searched over the current video frame by applying a convolution process in which the target 

model is the convolution mask. The candidate position is the location within the current frame 

with the largest convolution value. The convolution process can be replaced by other types of 

sum-comparing metrics, such as the sum of absolute differences (SAD), sum of square 

differences (SSD) and cross-correlation.  

Due to its inherent simplicity, this algorithm can be directly implemented in hardware or by 

taking advantage of vector machine code instruction sets (MMX, SSE, …), hence making it 

suitable for real time processing. Its main drawback is its only invariance to translation changes 

of the target model, which can be the case for targets moving relatively slowly between 

consecutive frames. Notwithstanding, due to its extremely high computational efficiency, 

several templates can be generated by applying small rotations and scale changes to the original 

target model. The algorithm can then be applied to the different templates, finding out the one 

that yields the best matching with the current frame. Similarly, in order to cope with occlusions, 

the original target model can be partitioned into several templates that can then be 

independently matched with the current frame.  

5.3.2.2 Results 
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Figure 11 – TM SFDA for L1, L2 and L3 videos. 
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Figure 12 – TM SFDA for L4 videos. 

 

Due to the relative simplicity of the TM algorithm, its best scores are obtained in the sequences 

belonging to L1 and L2, which correspond to the simplest tracking sequences. This algorithm 

does not consider the changes of scale, which is reflected in the decrease in performance for 

sequences of this category in all sets of sequences. For the L1 sequences, TM algorithm gets the 

highest score in illumination global, illumination local and occlusions categories, and the 

second best score in noise and similar objects categories. 

5.3.3 Lucas-Kanade tracking (LK) [36] 

5.3.3.1 Algorithm overview 

This single-target tracking algorithm can be considered to be a generalization of the above 

template matching algorithm that allows for small affine transformations (translation, rotation, 

scaling, shear mapping, etc.) of the target model. In particular, the target model is represented 

by the subimage corresponding to the given rectangular region of interest to be tracked. The 

target model (template) is then searched over the current video frame by finding the parameters 

of the affine transformation that best aligns the transformed image with the target model. That 

search is cast as a minimization problem that is iteratively solved by applying gradient descent, 

starting with an initial estimation of the sought parameters. Since the variation between 

consecutive video frames is usually small, this initial estimation can simply be the values of the 

parameters corresponding to the target model in the previous frame or zeroes for the first frame. 
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5.3.3.2 Results 
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Figure 13 – LK SFDA for L1, L2 and L3 videos. 
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Figure 14 – LK SFDA for L4 videos. 

 

The results obtained by the LK algorithm for the L1 sequences are far from the best results 

obtained in each of the seven categories. In the case of the L2 sequences, results in each 

category are the worst of all, except in the global illumination category. In contrast, for L3 and 

L4 sequences, the LK algorithm presents better results than the average. 
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5.3.4 Particle filter-based colour tracking (PFC) [37] 

5.3.4.1 Algorithm overview 

Similarly to the colour-based mean shift tracker summarized above, this single-target tracking 

algorithm represents the target model by the colour histogram of all pixels belonging to the 

given elliptical region of interest to be tracked. That histogram is also computed in such a way 

that pixels close to the target’s centre have a larger weight than those away from it according to 

the Epanechnikov kernel function.  

However, differently to the mean shift tracker, the candidate position of the target model in the 

current video frame is found as a weighted average of alternative candidate positions, each 

referred to as a particle. Every particle is represented by the position, size and the corresponding 

first derivatives of a 2D ellipse. The weight associated with each particle is computed according 

to the Bhattacharyya distance between the colour histograms of both the target model and the 

ellipse corresponding to that particle, such that the larger the distance, the larger the weight.  

Every particle iteratively evolves at every time step by changing its position and size according 

to its corresponding first derivatives plus a random offset following a zero-mean Gaussian 

distribution. The derivatives are also changed by applying a random offset. Initially, all particles 

can be randomly distributed over the video frame in order to cover regions where the target is 

expected to appear or where an object detection algorithm determines. The iterative algorithm 

stops when the candidate position converges.  

5.3.4.2 Results 
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Figure 15 – PFC SFDA for L1, L2 and L3 videos. 
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Figure 16 – PFC SFDA for L4 videos. 

 

In the case of PFC algorithm, for the first sequences set (L1) the presented results are the worst 

of all the algorithms (excluding occlusions category). PFC algorithm does not work properly in 

synthetic sequences, due to uniform regions cause malfunctions in the particle filter. For the L2 

and L3 sequences, medium-high results are obtained. 

5.3.5 Corrected background colour-based mean-shift tracker 
(CBWH) [38] 

5.3.5.1 Algorithm overview 

This single-target tracking algorithm is a variation of the original colour-based mean-shift 

technique [34] that modifies the stage that reduces the interference of background pixels, 

originally referred to as background-weighted histogram (BWH). In particular, the proposed 

algorithm, referred to as corrected background-weighted histogram (CBWH) only transforms 

the histogram of the target model, but not the histograms of the candidate positions, thus 

decreasing the probability of target model features that are prominent in the background. 

Experimental results show that CBWH can reduce the number of mean-shift iterations, as well 

as improve the tracking accuracy. One of its main advantages is that it reduces the sensitivity of 

mean-shift tracking to the target initialization. Therefore, CBWH can robustly track the target 

even if it is not initialized precisely. 
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5.3.5.2 Results 
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Figure 17 – CBWH SFDA for L1, L2 and L3 videos. 
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Figure 18 – CBWH SFDA for L4 videos. 

 

The algorithm CBWH presents its best performance for L1 sequences, which gets the highest 

score in the complex movement, noise and similar objects categories, and the second best score 

in the global illumination, local illumination and occlusions categories in comparison with the 

other algorithms. This algorithm studies the background and reduces its influence on the tracked 

object. For these synthetic sequences, background subtraction is performed with greater 

precision due to foreground and background are more differentiated, which facilitates its 

discrimination. However, for L2, CBWH does not present good results in comparison with other 

algorithms as in several categories has the second lowest score. 
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5.3.6 Scale and orientation adaptive mean-shift tracking (SOAMST) 
[39] 

5.3.6.1 Algorithm overview 

This single-target tracking algorithm is a variation of the original colour-based mean-shift 

technique [34] that is able to update the scale and orientation of the target model during the 

tracking process. The original mean-shift tracker only supports discrete changes in the scale of 

the target model. In the proposed variation, the image of weights generated by the original 

mean-shift tracker, in which a pixel has a large weight if the colour histogram associated with 

that candidate position is similar to the histogram of the target model, is utilized to estimate the 

area and orientation of the target. In particular, the zero-th-order moment of the image of 

weights is utilized to estimate the area of the target model, and hence its scale, whereas the 

width, height and orientation changes of the target are estimated using the area estimated before, 

as well as the second-order centre moment of the image of weights. 

5.3.6.2 Results 
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Figure 19 – SOAMST SFDA for L1, L2 and L3 videos. 
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Figure 20 – SOAMST SFDA for L4 videos. 

 

For L1 sequences SOAMST algorithm has better performance than the others algorithms in the 

L1 sequence in scale change category. This algorithm has been specially designed to withstand 

scale and orientation changes. Despite this, for L2 sequences this algorithm shows similar 

results than the others, and for L3 sequences it shows the second worst scores from all the 

algorithms. For all other categories of L1, SOAMST shows worse results than CBWH, MS and 

TM. 

5.4 Comparative results 
Figure 21 to Figure 24 show the comparative results of the evaluated 

algorithms.
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Figure 21 –SFDA for L1 videos. 
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Figure 22 –SFDA for L2 videos. 
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Figure 23 –SFDA for L3 videos. 
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Figure 24 –SFDA for L4 videos. 

 

The best results from the L1 sequence corresponds with the algorithms CBWH, MS and TM. In 

the scale change category, algorithm SOAMST presents results significantly better than the 

others. PFC algorithm presents the worse results in each one of the categories of this set of 

sequences. 

For the L2 sequences, the order of the scores for the local illumination, noise, occlusions and 

similar objects categories is always as follows: TM, SOAMST, MS, PFC, CBWH and LK. For 

the scale changes and complex movement categories, the obtained scores are similar, except for 

LK and CBWH, whose scores in the scale changes are slightly worse. Note that the results of all 

the algorithms in the category of global illumination are quite low. 

In the L3 sequences, LK, PFC, DBWH and MS present similar and better results than the other 

algorithms in most categories. In the scale change category, MS and PFC have the best results, 

over the rest of the algorithms. For occlusions category, all the algorithms have nearly identical 

results. SOAMST and TM algorithms have significantly worse results in the categories global 

illumination, local illumination and scale change. In the case of SOAMST scale change result, it 

is particularly interesting since the algorithm design attempts to solve the scale change problem 

and its score is lower than for other algorithms which do not consider this problem. 

Finally, for the L4 sequences, the obtained scores are generally low and worse than those 

obtained in the other 3 sets of sequences. PFC presents the worse results, especially in faces and 

people categories. 

5.5 Conclusions 
As expected, none of the algorithms performs well in all categories and subcategories. 

Furthermore, none of the algorithms work well in the same subcategory of the different 

categories. 

CBWH, MS and TM present the best results for the L1 sequences. In the case of the L2 

sequences, the results of the six algorithms are similar results in all of the subcategories except 

for similar objects subcategory, highlighting the poor performance of the illumination global 

subcategory. For the L3 sequences, the results of the six algorithms presents similar results 

except for algorithms SOAMST and TM that present significantly worse results in some 

subcategories. Finally, for the L4 sequences, there is no algorithm that works well. The worst 
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overall results have been obtained for this category. This is reasonable since it is the most 

complex category. 

5.6 Future research lines 
Based on the results and discussions of this document, we plan the following future research 

lines: 

5.6.1 Evaluation of more complex algorithms 

In general, the used algorithms have not been published recently, as seen in the publication 

dates of its documents. One possible future research line is to test more recent and powerful 

algorithms to compare their performance with the algorithms that have been already evaluated. 

5.6.2 Modify and complete the content set 

As seen in Table 25, the video content set used does not cover all the categories of videos in the 

proposed scenario classification in the EventVideo project. One possible future research line 

consist of completing the content set extracting some videos from another content sets or even 

recording new videos that complete the categories where needed. 

5.6.3 Evaluation of the algorithms with new metrics 

There are many measures that can be added to the evaluation system for extracting more 

information from the analysis of the algorithms. An analysis of different metrics used in other 

documents is proposed to select the metrics that best complement to the SFDA. 

 

5.6.4 Fusion 

Tracking fusion is a popular topic, studied by many researchers in recent years. The main 

motivation of this future work line is to study how to improve the object tracking results, 

focused on the fusion of multiple tracking algorithms.  
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6 Event Detection 

6.1 Introduction 
In this section, we describe the evaluation of the event detection task for the EventVideo 

project. In particular, we present the results, conclusions and future research lines for the two 

current event-related tasks: discrimination of stationary objects (between abandoned and stolen) 

and recognition of human interactions (with objects and other humans). 

6.2 Abandoned and stolen object discrimination 
The detection of stationary objects in video sequences and their discrimination between 

(abandoned and stolen) is common task in video surveillance. Typically, a system is composed 

of sequentially-connected stages to detect the object of interest (in this case, a stationary one) 

such as foreground segmentation, blob tracking & classification and static blob recognition 

routines. Finally, the discrimination stage is in charge of deciding the type of event that applies 

to the static object (abandoned or stolen). Figure 25 shows an example of such kind of systems. 

 

Figure 25 – Diagram of a typical video analysis system for abandoned and stolen object detection. 

 

After extracting each stationary foreground object, we can distinguish two distinct processing 

stages for performing this discrimination. First, desired features are extracted from the 

foreground mask, the reference background, the current frame and the location of the static 

object; as detected by preceding analysis modules. Based on the extracted features, a likelihood 

measure (score) is then generated for each static object. Then, this score (or set of scores) is 

used by a classifier that assigns each object to a class (stolen or abandoned). Figure 26 shows an 

example of the discrimination task and its inputs. 

 

Figure 26 –Stolen/abandoned object discriminator 

In this section, we evaluate the accuracy of the discrimination task using state-of-the-art 

approaches based on colour, edge and contour information. We present the evaluation scenario 

considered (dataset), the selected approaches and the obtained results. 
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6.2.1 Evaluation scenario 

As evaluation scenario, we have used the dataset ASODds (Abandoned and Stolen Object 

Discrimination dataset [40]), which is described in deliverable “D5.3. EventVideo test 

sequences, ground-truth and evaluation methodology”[1]. This dataset consists of two sets of 

input data (foreground masks) for the discrimination task for, respectively, real and ideal 

foreground data with three degrees of complexity (see Table 13). 

 

Category Number of annotations (blobs) Complexity 

Annotated sequences Real sequences  

Abandoned  Stolen Abandoned Stolen  

S1 771 442 756 863 Low 

S2 666 316 794 397 Medium 

S3 595 174 852 660 High 

All 2032 932 2402 1920  

Table 26 – ASODds dataset description. The categories Sx directly correspond with the Sx 

scenarios considered in the document D5.3 

 

As metrics, we evaluate the recognition performance of the discrimination task using the area 

under the ROC (Receiver Operating) curves and the discrimination accuracy as follows: 

 

, where TP are True Positives, TN are True Negatives, FP are false positives and FN are false 

negatives. Each term is defined as follows: 

 

Table 27 – Definition of confusion matrix (TP, TN, FP, FN) for the discrimination task 

6.2.2 Approaches 

In order to cover the related state-of-the-art, we have selected the following approaches: Based 

on region-level colour information (CHIST), Based on edge information (GH and GL), Based 

on combining edge and colour information (FUS), Based on contour information [40] (PE, GR 

and GE), and Based on pixel colour information (PCC). 

6.2.2.1 Based on region-level colour information (CHIST) [41] 

We have selected an approach [41] based on measuring the colour similarity between the 

regions delimited by the foreground mask (internal and external regions of the bounding box of 

the stationary blob) in both the background and the current frame. The assumption is that in the 

current frame, stolen objects show a higher colour similarity (in the current frame) between 

these two regions than abandoned objects. Analogous reasoning is applied to the background 

frame and therefore, abandoned objects present high colour similarity between these regions in 

the background frame.  
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6.2.2.2 Based on edge information (GH and GL) [42] 

Two approaches are selected based on comparing the values of the image gradient along the 

contour of the object (as obtained from the foreground mask) in the background and current 

frame images. It assumes that this ‘edge’ energy is high in the current frame for abandoned 

objects and low for stolen objects. The implemented approaches are similar to the one described 

in [42].  

6.2.2.3 Based on combining edge and colour information (FUS) [43] 

One approach has been selected that combines colour and edge results [43]. It computes 

likelihood models for each feature (colour and edge) and case (abandoned or stolen). It assumes 

the scores follow a Gaussian distribution which can be estimated using training data. Then, final 

scores are obtained by combining the likelihood models for each case (abandoned and stolen), 

selecting the final score with maximum value. 

6.2.2.4 Based on contour information (PE, GR and GE) [40] 

The main limitation of the edge and colour based approaches is that they need homogeneous 

properties in the regions of the background close to the static object (in terms of colour, motion 

and edges) and rely on precise foreground segmentation masks. Therefore, their accuracy is 

reduced in complex situations. Recently, contour-based approaches have been proposed to 

increase the robustness in complex situations by applying adjustments of the object contour (e.g. 

active contours) using pixel or region information. If the contour adjustment is reduced to small 

contour (compared to the initial one) in the current image, the object is stolen whereas if it 

occurs in the background image, abandonment has happened. In this study we have selected a 

pixel-based (PE) and two region-based (GR and GE) active contour approaches described in 

[40]. 

6.2.2.5 Based on pixel colour information (PCC) [44] 

Due to the iterative nature of contour-based approaches, their use in real-time video surveillance 

is limited. Derived from the object contour, the colour contrast along the object contour at pixel 

level can be used where the colour difference is measured between both contour sides [44] 

(Figure 27). 

 

Figure 27 – Pixel colour contrast detector: (a) static foreground object, (b) analysed points along 

the boundary and (c) analysed contour point. 

6.2.3 Comparative results 

For the annotated data, a summary of the results is shown in Table 28 (accuracy) and Figure 28 

(ROC). CHIST performs generally well on all categories given an accurate (ideal) foreground 

mask. However, some problems have been observed due to quantization noise introduced by the 

video compression scheme. In some cases, it causes colour information to leak beyond object 
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boundaries. We have seen that this problem affects smaller objects, which explains why it 

performs poorly on category 1 (low complexity); as this category includes mostly small objects. 

Additional problems have been observed due to the fact that the colour histograms are only 

computed on the Hue channel of the HSV colour space (assuming that this channel gives 

enough contrast). GH and GL show very good results for blobs of both classes. By using a 

window-based approach instead pixel-based one, GL has shown to provide better results than 

GH. Both discriminators, however, are affected by the presence of strong edges near  the object 

boundaries that can be attributed to the background, as this causes the discriminators to produce 

a score that would correspond to objects from the opposite class. Active contours discriminators 

(PE, GR and GE) outperform the previous ones. PE has been effective in all cases, attaining 

perfect classification for all blobs in the annotated data set. GR and GE produce similar scores. 

However, region based approaches (GR and GE) are more robust to small changes between 

frames are attributed to noise (camera noise, compression noise...). This has not been observed 

for the PE discriminator, which seems to be more vulnerable to noise. PCC discriminator has 

proven very robust in situations in which the other discriminators have shown weaknesses. 

Finally, FUS discriminator demonstrates that combining different approaches is not an easy task 

 

Table 28. Discrimination results for annotated data. (Key. ACC:accuracy, AUC:Area Under 

Curve). 

 

 

Figure 28 – ROC analysis for single-feature discrimination on annotated data 
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For the real data, the results are depicted in Table 29 (accuracy) and Figure 29 (ROC). For 

CHIST, we can see a decrease in accuracy of roughly 10% as compared to results on annotated 

data. This is explained by the fact that the CHIST completely relies on correct segmentation to 

obtain the histograms of inner and outer regions of the object to analyse. If there are errors in 

these regions, the extracted histograms may be too similar and the discriminator is incapable of 

producing a good score. For GL and GH, their reduction in accuracy for the gradient 

discriminators is not as significant as with other discriminators. This can be primarily attributed 

to the contour adjustment operation applied to the initial extracted contour, as it drives the 

contour to match the actual boundaries, as well as the small neighbouring window in which the 

analysis is performed. We can conclude that these edge-based algorithms (GL and GH) are 

affected by imprecise segmentation with a ~5% decrease. 

 

Table 29. Discrimination results for real data. (Key. ACC:accuracy, AUC:Area Under Curve). 

 

Figure 29 – ROC analysis for single-feature discrimination on real data 

For the active contours discriminators, we can observe that the accuracy of the PE and GR 

discriminators is reduced due to incorrect segmentation demonstrating a dependency on the 

contour initialization. In contrast, the GE has shown robustness against incorrect foreground 

segmentation. We can attribute this to the fact that the adjusted contour generally tends to shrink 

unless the object boundaries are nearby. This is usually the case, even for inaccurate foreground 

masks. We have observed, however, that if the foreground mask is initialized inside a uniformly 
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coloured object, the contour tends to shrink or even disappear. When this happens in both the 

current frame and the background the resulting is score is very close to 0.0. This problem is 

more evident for smaller blobs, as the contours tend to quickly disappear in both images. This 

explains the presence of scores with value 0.0 (Figure 6.11), that in the vast majority of cases 

correspond with very small foreground masks due to over-segmentation. 

PCC discriminator is the least affected for incorrect segmentation. We could explain this by 

taking into consideration that the measures are taken at a distance from the corresponding 

contour pixel (parameter L), and averaged inside a small window (parameter M), which leave 

the discriminator a margin to overcome segmentation inaccuracies. 

Table 30 shows the obtained computational costs of all the evaluated discriminators. Maximum 

and minimum values correspond to large and small objects, respectively. As it is shown, 

CHIST, GL and GH discriminators have a lower computational cost than the proposed active 

contours ones (PE, GE and GR). This is due to the complexity of the employed active contours 

algorithms (iterative nature). Among all evaluated discriminators, PCC has shown the lowest 

computational cost, improving existing approaches, due to the simplicity of the performed 

analysis (average colour contrast). 

 

Table 30. Computational cost comparative 

6.3 Human interactions (with objects and humans) 
The recognition of human-related events has emerged as a very promising research area due its 

multiple applications such as video surveillance. These events can be broadly divided into 

activities (e.g., jump, run) and interactions (e.g., get an object). Moreover, human interactions 

can be divided if they consider an object (e.g., leave bag) or humans (e.g., shake hands). 

Typically, a complete event detection system is composed of several stages such as foreground 

detection, blob tracking, feature extraction and event recognition. Each stage provides data that 

is used for recognizing the event in the last stage. Figure 30 shows an example of such kind of 

systems. 

 

Figure 30 – Common block diagram for a generic event detection system 

In this section, we evaluate the accuracy of the event detection task using state-of-the-art 

approaches for recognizing human-object interactions and human-human interactions. We 

present the evaluation scenario considered (dataset), the selected approaches and the results. 

6.3.1 Evaluation scenario 

As evaluation scenario, we have focused on indoor scenarios where spatial information (e.g., 

location of static parts of the scene such as tables and doors) can be defined and applied to 

improve accuracy. We used the dataset EDds (Event Detection dataset [45]), which is described 

in the document of the EventVideo project “D5.3. EventVideo test sequences, ground-truth and 

evaluation methodology”. It has 17 sequences focused with two types of human-related 

events: interactions (Leave, Get and Use object) and activities (Hand Up and Walking).  
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Different degrees of complexity are contained in the dataset (see Table 31). As we are only 

interested in human interactions, activities of EDds (Hand Up and Walking) are not considered.  

 

Category Event Occurences Complexity 

Interactions Real 

sequences 

Segmentation Tracking Classification Event 

LEA  GET USE HUP WLK     

S1 18 13 9 9 54 Medium Low Medium Medium 

S2 7 7 10 14 44 Medium Medium Medium High 

S3 14 14 22 20 10 High High High High 

Table 31 – EDds dataset description. The categories Sx directly correspond with the Sx scenarios 

considered in the document D5.3 

In order to increase the variability and quantity of data for evaluating the performance of this 

evaluation scenario, we have included two additional datasets: LIRIS [46] and SSG [47]. 

Moreover, the use of the LIRIS dataset allows participating in the “Human activities recognition 

and localization competition” (ICPR - HARL 2012, and getting a performance comparison with 

other existing approaches. 

The LIRIS dataset contains several human-object and human-human interactions in a controlled 

indoor settings captured with a static camera at a 720x576 resolution (25 fps). Each sequence 

contains 1-5 humans performing actions in short sequences (500-3000 frames). This dataset can 

be considered as a very realistic scenario as the events are performed in a natural way presenting 

several occlusions in most of the situations. Moreover, different viewing angles and distances to 

the camera were considered in the sequences. Besides colour and depth information were 

provided for the data composing two datasets: D1 (colour+depth) and D2 (colour). Sample 

frames are shown in Figure 31. More details can be found at http://liris.cnrs.fr/harl2012/ 

The SSG dataset mimics the number of events contained LIRIS dataset whilst reducing their 

complexity. Hence, simple backgrounds are considered with fewer humans involved (1-3). 

Actions are performed in a simple way without occlusions considering the camera viewing 

angle. The distance to the action is short and therefore, facilitates the event recognition. 

http://liris.cnrs.fr/harl2012/
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Figure 31 – Examples of human-related events of the LIRIS dataset (KEY. DI:Discussion, GI:Give 

Object. BO: Take Object. EN: Enter through a door. ET: Try to unlock a door. LO: Unlock a door. 

HS: Hand Shake. UB:Unattended Bag. KB: Keyboard typing. TE:Talking with telephone). 

 

 

Dataset Equivalency in 

document D5.3 

Event Occurences Complexity 

BO  EN LO UB HS KB TE  

SSG S1 32 3 9 13 3 8 10 Low 
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ED S2 46 44 - - 9 20 - Medium 

LIRIS-train S3 9 20 - 6 11 12 5 High 

Table 32 summarizes the material used for evaluating the performance of the event recognition 

task and an estimation of the overall complexity of each dataset. As it can be observed, the 

LIRIS dataset present the highest complexity. 

 

Dataset Equivalency in 

document D5.3 

Event Occurences Complexity 

BO  EN LO UB HS KB TE  

SSG S1 32 3 9 13 3 8 10 Low 

ED S2 46 44 - - 9 20 - Medium 

LIRIS-train S3 9 20 - 6 11 12 5 High 

Table 32 – Dataset description for evaluating human interactions 

As metrics, we evaluate the event detection performance using the standard spatio-temporal 

overlap between the detections generated by the system and the event annotations (ground-

truth). This measure considers standard Precision (P) and Recall (R) as described in the 

document of deliverable “D5.3. EventVideo test sequences, ground-truth and evaluation 

methodology”[1]. 

6.3.2 Approaches 

6.3.2.1 VPULab approach[47] 

The approach developed within the EventVideo project is based on the event detection system 

that uses contextual information [48]. The VPULab approach contains the typical analysis 

stages (foreground segmentation, blob tracking, feature extraction and event recognition) and an 

additional one that considers contextual information that allows improving the event recognition 

rate. It detects 10 human-object and human-human interactions (all the events defined in the 

ICPR-HARL competition) based on features extracted from foreground blobs: blob velocity, 

blob trajectory, people likelihood, blob compactness, people skin and relative distances to 

contextual objects (tables, chairs, walls…). More details can be found at [47]. Figure 32 shows 

an example of the contextual information and Figure 33 depicts the block diagram of the 

approach. 

 

Figure 32 – Example of contextual information used by the system 

 



   

 

TR.01: Evaluation Results and Future Research Lines   60  

 

 

Figure 33 – Diagram of the VPULab event detection system 

6.3.2.2 Additional approaches in the ICPR-HARL 2012 competition 

Initially 70 teams were registered in the competition and downloaded the dataset. Finally, only 4 

participants submitted results that are briefly summarized: 

 ADSC-NUS-UIUC participant is a collaboration between Advanced Digital Sciences Center 

(Singapur), National University of Singapore (Singapur) and University of Illinois at 

Urbana-Champaign (EEUU). It only used D1 dataset (colour+depth) and the approach is 

based on combining human detection (using HOG), human pose detection, specific object 

recognition, interaction attributes and scenario type classification. The combination scheme 

is a Bayesian network. 

 TATA-ISI participant is collaboration between two indian institutions: India: Innovation 

Lab, Tata Consultancy Services e Indian Statistical Institute. It also used D1 dataset. Its 

approach is based on two stages. First, moving object segmentation is performed through 

depth information and key pose recognition is used to recognize the events as described in 

[49].  

 IACAS participant is the Chinese Academy of Sciences (Beijing, China). It focused on the 

D2 dataset (only colour). Its approach is based on STIPs (Space-Time Interest Points) as 

defined in [50]. Then, STIPs are used to train SVMs for each event to recognize. Then, 

event recognition is determined as the output of the SVM with maximum likelihood. The 

localization is performed similarly to [51]. 

A detailed participant description is available at http://liris.cnrs.fr/harl2012/algorithms.html 

6.3.3 Comparative results 

Evaluation of the VPULab approach is done in two phases. The first one aims to determine the 

strengths and weaknesses of the approach in the three considered datasets. The second provides 

a comparison with state-of-the-art approaches within the ICPR-HARL competition. 

6.3.3.1 Phase 1 

Results are summarized in Table 33 for the VPULab approach. Although results for SSG and 

ED present good performance, it can be observed that the performance for LIRIS-train is highly 

reduced. Figure 34 shows some of the most common failures of the approach. First row shows 

that wrong foreground segmentation (background is not correctly represented) prevents the 

correct detection of objects. Moreover, KB (keyboard typing) is wrongly detected as there is an 

http://liris.cnrs.fr/harl2012/algorithms.html
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overlap between the skin of the arm and the keyboard. Second row presents a situation where in 

the point of interest of the handshake, the hands are not detected and therefore, no skin can be 

associated to both humans. Hence, the event is not detected. Third row shows that the 

dependence on the size of interacting objects (mobile phone is not detected whereas the laptop 

is detected and included in the background). 

 

 

Figure 34 – Failure examples of the VPULab approach 

 

Table 33 – Results of the VPULab for detecting human-object and human-human interactions 

6.3.3.2 Phase 2 

Here we present the results of the VPULab approach in the ICPR-HARL competition using the 

D2 dataset (only colour) and a comparison with other participants. 

The first comparison is given in Table 34 for the recognition task without spatial and temporal 

localization (e.g., bounding box and number of frames), that is, indicating if the event has been 

detected considering the entire sequence.  

It can be observed that the VPULab system presents an acceptable performance level compared 

to other participants. Although it obtained a low recall (36%), it has the second better value and 

it is the most precise system (66%). Compared to experiments in phase 1, we can observe that 

the VPULab approach has decreased its precision but increased the recall. Comparing the 

VPULab with other participants, we can observe that without using depth information, our 

Mean 
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system is able to achieve similar performance to the participants using D1 datasets (where 

foreground objects can be easily extracted based on depth data). Moreover, it can be observed 

that the two systems using key pose analysis present lower performance compared to the other 

approaches that do not use such technique. This can indicate that key pose estimation is a not 

sufficiently discriminative feature to differentiate events from other. Moreover, most of the 

participants used training data (from LIRIS-train) to detect in the test dataset. The low 

performance also indicated that pure machine learning methods are not suitable for event 

recognition as the variability in the executions of the same event is very high 

 

Table 34 – Results of the ICPR-HARL 2012 competition  (without localization). A description of the 

participant teams is available at http://liris.cnrs.fr/harl2012/ 

The second comparison is given in Table 35 for the recognition task with spatial and temporal 

localization (e.g., bounding box and number of frames). If we observe the results, it looks that 

the VPULab system is not accurate. However, it has to be considered the accuracy of the 

annotations and rules used to annotate the events. Spatio-temporal localization requires a 

considerable overlap between detections and annotations. As no particular rules were provided 

to participants for event annotations, we decided to generate an output considering the object of 

interest. For example, Figure 35 shows an example of UB (unattended bag) event where it can 

be observed that the competition organizers provided an annotation different from the expected 

output in such kind of systems. It is expected that an alarm is generated after the event has 

happened (the abandonment) and not during it. Moreover, the event should consider the object 

of interest as the abandoned event might involve that the owner of the object exits the scene (as 

if the owner is close to the object, it is not unattended). Therefore, the obtained results have to 

be reasonably considered. 

 

Table 35 – Results of the ICPR-HARL 2012 competition (with localization). A description of the 

participant teams is available at http://liris.cnrs.fr/harl2012/ 

In summary, this second evaluation does not give sufficient hints about spatio-temporal 

localization performance of the VPULab approach. In fact, only one the four participants 

obtained good localization results and it is not directly comparable to the VPULab approach as 

it uses different data (colour + depth, versus our approach that only uses colour). 
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Figure 35 – Visual comparative of VPULab detection versus annotations given by ICPR-HARL 

6.4 Conclusions 
In this section we have presented an evaluation of two tasks related with the recognition of 

events in video: discrimination for abandoned/stolen objects and human-based interactions.  

The first evaluation has been performed on annotated and real data over a representative set of 

state-of-the-art measures. Reported results have demonstrated high accuracy with both types of 

data. Although a slight reduction is observed with real data, a recognition rate higher than 99% 

was achieved with two algorithms based on active contour adjustment (GE) and pixel colour 

contrast (PCC). PCC also presented the lowest computational cost and therefore, being the best 

choice for the discrimination task between abandoned and stolen. 

The second evaluation demonstrated that performance of current systems for recognizing 

human-object and human-human interactions is far from being successful. The VPULab 

approach was applied to three similar datasets obtaining a mean accuracy of 60% (in both 

precision and recall). VPULab participation in ICPR-HARL 2012 competition (using a dataset 

with a significantly higher complexity) showed that although the performance of the system is 

still low, it is higher that the state-of-the-art systems based on colour and some of them based on 

colour and depth data. In both experimental phases, the main problems of the system were due 

to the wrong detection (or misdetection) of objects and humans of interest that performed the 

actions. Models of the events apparently worked properly in most of the situations. 

6.5 Future research lines 
As future research lines, we propose the following for the two evaluated tasks. 

6.5.1 Stationary object detection in high-density scenarios 

For systems devoted to detecting abandoned or stolen objects, the discrimination task seems to 

be completed (due to the high recognition rates achieved in the evaluation) and the complexity 

of recognizing the events seems to be in the extraction of the stationary object in crowded 

scenes (which is an open problem in the current literature). Hence, future work in this task 

would be directed towards developing efficient algorithms for stationary object detection in 

videos where there is high density of moving objects. One possible research line in this 
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direction would be the extraction of stationary regions without performing explicit tracking. 

Techniques like [52] are able to detect moving objects with unusual motion patterns in the 

scene, including stationary objects. An extensive evaluation of the algorithm in crowded scenes 

would be necessary to assess the suitability of such techniques for this particular task. 

Moreover, comparison with state-of-the-art approaches should be considered. 

6.5.2 Human-related interactions enhancements 

For recognizing human-related interactions, we have identified two main drawbacks of the 

VPULab system. The first considers the low-level data extraction (i.e., foreground detection and 

tracking). It was observed that most of the problems were due to false or missed detections. 

Development of robust approaches should be thoroughly considered in order to improve current 

performance. The second one considers the reduction of the parameters for configuring the 

event recognition models as they currently require manual fine-tuning by an expert. 
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7 Conclusions and future work 
In this Technical Report we have evaluated the algorithms currently considered within the 

EventVideo project, both State-of-Art (SoA) ones and the ones developed within VPULab. The 

evaluation has been guided by the evaluation framework (datasets, associated ground-truth and 

metrics) described in Deliverable 5.3v1 “EventVideo test sequences, ground-truth and 

evaluation methodology”[1]. 

 

With respect to segmentation, the work reported is divided in two depending on the cases of 

fixed or moving cameras.  

In the fixed camera scenario, there are several algorithms that perform well enough if they 

include specific techniques. Nevertheless, there exist still problems to be solved. There is a need 

to confront the sensitivity-discriminability problem: adequately identify highly dynamic 

backgrounds without degrading the system performance in foreground discrimination and, 

inversely, design systems accurate enough to discriminate camouflaged foreground while 

maintaining its capability to adapt to changing backgrounds. Additionally, it is important to 

evaluate the limits of applicability of pixel level segregation: the use of post-processing 

approaches may be a solution, but there is a high increase in the computational cost of the 

system and its operation is severely conditioned to their preliminary VOS stage. Finally, it is 

necessary to remark that presented techniques might not work correctly in crowded scenarios 

(categories S3 and S4 of Error! Reference source not found.) as they were designed under the 

premise that background samples of each pixel are majority along the video.  

In the moving camera scenario, it has been demonstrated that the accuracy of the Camera 

Motion Estimation (CME) stage can have tremendous influence in the whole segmentation 

result. Given this importance, as well as the many additional factors also influencing 

segmentation, it seems reasonable to isolate the evaluation of CME stage from the segmentation 

itself. In the evaluation we have found that situations involving large objects –which are 

completely normal in every-day videos– can make standard techniques used for CME fail. 

Therefore, it is extremely valuable to have CME techniques that can provide robustness to large 

objects even in absence of temporal information. These techniques, which will often be more 

computationally demanding, can always be used when temporal information is unavailable (eg. 

initial frame) or becomes unreliable (eg. after shot changes or when a previously static object 

starts to move). 

 

The work in people detection provides several conclusions. The use of segmentation stages, 

even introducing the problems of under/over-segmentation, makes easier the classification stage 

than in approaches working with exhaustive search. The combination of segmentation and 

exhaustive search reduces these problems but they are still a drawback especially in complex 

scenarios where these problems are magnified. Therefore, exhaustive search approaches are 

more reliable in complex environments, but it must deal with a great number of negative 

examples (potential false positive detections), reducing the recall rate in order to maintain the 

precision rate. As expected, the use of simplified person models gets, mainly, worse results 

mainly in terms of Precision than those using more complex person models. Finally, although 

the motion information is less characteristic than the appearance for people detection, the 

combination of motion and appearance shows to be useful also in complex scenarios. 

 

With respect to tracking, as expected, none of the algorithms performs well in all categories and 

subcategories. Furthermore, none of the algorithms work well in the same subcategory of the 

different categories. This demonstrates that different algorithms are suited for different 

scenarios, without having found any working correctly in all of them, although of course there 

are algorithms that outperform others from a general point of view. For complex scenarios (L4 

sequences) scenarios, there is no algorithm that works well.  
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Work in event detection has been done in two scenarios: abandoned/stolen objects detection and 

human-based interactions.  

With respect to abandoned/stolen object detection, the work has been focused in discrimination 

of abandoned/stolen object (after a segmentation considering moving and static objects). Results 

show high accuracy in both cases using two algorithms, one based on active contour adjustment 

(GE) and the other one on pixel colour contrast (PCC). As the later presents the lowest 

computational cost, it is the best choice for the discrimination task between abandoned and 

stolen. 

The evaluation of human-based interactions has demonstrated that the performance of current 

systems for recognizing human-object and human-human interactions is far from being 

successful. The VPULab approach was applied to three moderate-complexity datasets obtaining 

a mean accuracy of 60%, whilst its use over a dataset with a significantly higher complexity 

(ICPR-HARL 2012) showed a very low performance. Nevertheless, its performance was higher 

than other state-of-the-art systems based on colour, and some of them based on colour and depth 

data. In both experimental phases, the main problems of the system were due to the wrong 

detection (or misdetection) of objects and humans of interest that performed the actions. Models 

of the events (apparently) worked properly in most of the situations. Therefore, it can be 

concluded that as in the case of abandoned/stolen object detection, the previous analysis stages 

(mainly segmentation, but also object detection and tracking) are the main drawback for 

improving event detection, as the models work properly when the previous stages do. 

 

 

Considering the analysed results, the aforementioned conclusions and the existing problems, we 

propose several main lines of future research. 

 General 

o Expand the evaluation framework (datasets and metrics) 

 Segmentation (see section 2.6) 

o Refinement by post-processing techniques   

o Use of alternative features. 

o Include semantics in the descriptions 

 People detection (see section 4.6) 

o Improve or refine segmentation 

o Appearance and motion fusion 

 Tracking (see section 5.6) 

o Incorporation of more complex algorithms 

o Fusion approaches 

 Event detection (see section 6.5) 

o efficient algorithms for stationary object detection in crowded scenes 

o incorporation of robust segmentation, detection and tracking approaches 

o optimization of parameters configuration 
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